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Outline
• Brief overview of the NOvA experiment

• Neutrino production and detector components

• Study of Quasi-Elastic scattering in the NOvA Detector 
Prototype
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• NOvA will study        appearance in       and        beam

• Measure the θ13  and search for the mass ordering

• Search for the CP violation phase δ
• Precise measurement of  θ23 and Δm232

• Cross section measurements

      NOvA: NuMI Off-axis νe  Appearance Experiment

Physics Goals for NOvA
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• Detector Prototype 110 mrad off-axis
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• Extrusion modules are made from 32 cells

• Single sided readout from 0.7 mm diameter looped WLS fiber

• Cells filled with mineral oil and liquid scintillator 

• Avalanche of Photodiodes (APD) converts light to an electrical 
signal, actively cooled to -15C

15.6m

Scintillator cell with 
looped WLS Fiber
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Detector Components
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Detector Prototype
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Fully instrumented
Mostly instrumented
Partially instrumented
Uninstrumented

Data

Config 1

Config 2

Proton On Target (POT) collected:
Configuration 1: 9.6e+18
Configuration 2: 1.7e+20

Commissioning Operations
APD tests helped:

• Developed surface coating for APDs to protect the surface 
from potential contact with contaminants
• Added an active air drying system to keep out condensation 
due to cooling

• Detector located on the surface at Fermilab

• Prototype Detector used to test all detector systems: 
assembly  technique, DAQ,  APD installation, scintillator 
filling, electronic installation, calibration
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Quasi-Elastic Studies 
• Developed a selection criteria to identify the QE interactions and 

reject background

• Background for the QE interactions: 

• Cosmic muons

• Resonance (RES), Deep Inelastic (DIS), Neutral Current 
(NC), Coherent (COH) interactions
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Neutrino interaction in the NDOS 
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Table 14: Cosmic background events
In fiducial Cosmic cut One track Track length (> 60cm) Fully contained After PID cut

9194 757 612 558 64 24
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Figure 84: Angle of the tracks with respect to the beam direction for pre-selected events, the black is
the data in the spill window and the blue is the cosmic background events.

Appendix D

Normalization checks

Neutrino energy and parents

Figure 85 shows the reconstructed neutrino energy for the CC QE selected events in Data and MC simulations.
In addition, we plot the reconstructed neutrino energy for each parent contribution (pions and kaons) in the
left plot of figure.
A crude study was made to explore the Data and Monte Carlo comparison discrepancies, we reweighed the

neutrinos coming from kaon by a factor of 0.7. The right hand plot in figure 85 shows the Data and MC
comparison, gray distribution shows the neutrino energy after reweighing. We note comparison Data-MC
neutrino has better agreement after the reweighing.
In addition, we fit simultaneously the MC predictions from pions and kaons with the data using MC(total) =
↵ ⇥ MC(pions) + � ⇥ MC(kaons). This fit produces ↵ = 0.8 and � = 0.7 with a �2/NDF = 1.99/4 the
result is shown in left plot of figure 86.
Normalizing the MC simulations to the data we find �2/NDF = 2.17/4. The area normalized distribution
is shown in the right plot of figure 86. Both �2/NDF are very similar for the area normalized and the
distributions after we fit the pions and kaons with our data. Also figure 87 shows the ratio of pions to
kaons as a function of the neutrino energy after POT normalization and from the result of the fit, ratio is
very similar. This shows that Data-MC discrepancies could be from a normalization factor and no from the
simulations of our hadron production.

Comparing our simulations with external simulations used to study the o↵ axis NuMI

beam

The MiniBooNE experiment measured the ⌫µ events in an o↵ axis neutrino beam (NuMI) at 110 mrad. They
show good agreement between data and MC simulations [30].
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• Cosmic muons:

• We use a selection to reject the cosmic background:  timing cut and the 
inverse of slope of the tracks in the vertical view

Cosmic Background

8

Inverse of slope of the 
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Quasi-Elastic Selection

• Using a k Nearest Neighbors Algorithm (kNN) to select muons from QE 
interactions, where k is the number of neighbors

• Nearest Neighbors Algorithm searches for k events that are closest to a 
query event using the Euclidean distance 

• Estimates a multidimensional probability density function by counting the 
number of signal and background events in a small neighborhood around 
the query event

where      and      are the number of signal events and                                                                                                                                                                                                                                               
the number of background events

kNNID =
kS

kS + kB
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where k
S

is the number of the signal events, and k
B

is the number of the background

events in the training sample. The relative probability that the test event is of signal

type is give by

P
S

=
k

S

k
S

+ k
B

=
k

S

k
. (8.5)

The KNN searches for k events that are closest to the test event. The closeness is

measured using the Euclidean distance

R = (
nvarX

i=1

|x
i

� y
i

|2)
1
2 , (8.6)

where n
var

is the number of input variables used for the classification, x
i

are coordinates

of an event from a training sample and y
i

are variables of an observed test event[].

The k events with the smallest values of R are the k-nearest neighbors. A value of k

determines the average size of the neighborhood over which probability density functions

are evaluated.

Figure 8.1 illustrates event classification with the k-nearest neighbor algorithm. The

Exploring a kNN

• kNN uses a training sample to estimate a density for the 
signal and background events in a small neighborhood 
around the query event

• KNN estimates a multidimensional probability density 
function by counting the number of signal and 
background events in the small neighborhood

• Signal
•Background

kNN searches for the 20 nearest point in the nearest
neighborhood (circle)Figure 8.1: Example of KNN classification. Signal is shown in black and background

is shown in blue and the query event with a black star. A neighborhood enclosing the
20 nearest neighbors is shown with the black circle. The KNN searches for 20 nearest
points in the nearest neighborhood (circle) of the query event. The nearest neighborhood
counts 13 signal and 7 background points so that query event may be classified as a
signal candidate.

number of training events has been reduced to illustrate the principle of the algorithm.

We use three di↵erent variables as an input to the KNN. The variables are: number of

planes, mean energy PECorr per plane and PECorr around the vertex or 50 cm radius.
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• Preselection cuts:

• Event within 10 microsecond beam spill

• Interaction point 50cm from the edge of the detector

• One and only one reconstructed track

• The slope of the tracks is not near vertical (cosmic rejection)  

• Track does not exit the detector

• Quasi-Elastic interaction identification using a k Nearest Neighbors 
(kNN) algorithm 

Studies in MC use channel masks for a partially instrumented detector 

Quasi-Elastic Selection
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• Preselection cuts:

• Event within 10 microsecond beam spill

• Interaction point 50cm from the edge of the detector

• One and only one reconstructed track

• The slope of the tracks is not near vertical (cosmic rejection) 

• Track does not exit the detector

• Quasi-elastic interaction identification using a k Nearest Neighbors (kNN) 
algorithm 

Studies in MC use channel masks for a partially instrumented detector 

Quasi-Elastic Selection

Data
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• Using a k Nearest Neighbor (kNN) algorithm with three input 
quantities

PECorr around the vertex
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Three Input Variables
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Pions from NC interactions 
travel shorter distances than 
CC

RES, DIS and NC deposit more 
energy around the vertex

NC interactions deposit 
more energy per plane
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• Using a k Nearest Neighbors (kNN) algorithm with three input 
quantities

13

Mean energy per active plane
 normalized to track lengthEnergy around the vertex Number of planes
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Quasi-elastic Selection
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Figure 1:
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PID
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Quasi-Elastic Separation
• After training the kNN with the input variables on MC samples QE, RES, 

DIS and NC events apply it to a different MC sample

• kNN selection:

For kNN>0.3, events have 65% purity and 85% efficiency for the  partially 
instrumented detector for both configurations 

14New Perspectives/Minerba Betancourt

Quasi-elastic Separation
• After training the input variables on MC samples QE, RES, DIS and NC 

events apply it to a different MC sample
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Three input variables
• Number of planes

• Energy around the vertex

• Mean energy per active plane normalized to track length

PECorr around the vertex
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Pions from NC interactions 
travel shorter distances

RES, DIS and NC deposit 
more energy around the 
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Selected
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Quasi-Elastic Separation
• After training the kNN with the input variables on MC samples QE, RES, 

DIS and NC events apply it to a different MC sample

• kNN selection:

For kNN>0.3, events have 65% purity and 85% efficiency for the  partially 
instrumented detector for both configurations 
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• Neutrino energy is reconstructed from the length of the 
track and its angle from the beam direction

• Four momentum is reconstructed using

Neutrino Energy and Q2 Reconstruction
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• Momentum is obtained from the range of the tracks
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 Config 2

Angle and momentum for  νμ  CC QE selected events after cosmic background subtraction 
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MomentumAngle  Config 2
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• Reconstructed neutrino energy

Neutrino Energy

18

E⌫ =

2(M
0
)Eµ � ((M

0
)

2
+ m2

µ � M2
p )

2[(M 0
) � Eµ +

q
E2

µ � m2
µ cos ✓µ]

MC normalized to Data

M
0
= Mn � EB and EB = 25MeV

Neutrino Energy for  νμ  CC QE selected events after cosmic background subtraction 

 Config 2



Minerba Betancourt

• Reconstructed four momentum transfer 
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• Selected CC QE four momentum transfer

)2(GeV2Q
0 0.1 0.2 0.3 0.4 0.5

C
os

m
ic

-S
ub

tra
ct

ed
 E

ve
nt

s

0

20

40

60

80
Data

MC
MC Background

20

For νμ CC QE selected events after cosmic background subtraction and MC simulation
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•  Background dominated data with two reconstructed tracks from the interaction 
    is used to cross check the Monte Carlo for background events

•  Each track has a minimum of four hits in each view

•  Longest track used to determine the energy and four momentum transfer

• Background data agrees with MC simulations

Background Study

21

)2(GeV2Q
0 0.1 0.2 0.3 0.4 0.5

Ev
en

ts

0

1

2

3

310×

MC CC QE

MC CC RES

MC CC DIS

MC NC

Config 2

)2(GeV2Q
0 0.1 0.2 0.3 0.4 0.5

C
os

m
ic

-S
ub

tra
ct

ed
 E

ve
nt

s

0

20

40

60

Data
MC

MC normalized to Data

 Config 2  Config 2



Minerba Betancourt 22

• Single differential cross section

•       Unfolding matrix

•        rate of Quasi-Elastic interactions (Selected -background)

•        bin width

•     efficiency

•     integrated flux 

•  T number of neutrons

• Unfolding is performed using a Bayesian method
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• Single differential cross-section is produced by unfolding the Q2 
distribution and normalization by efficiency, integrated flux and 
neutron number
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MC is scaled to data to show shape
Preliminary, pending a review of the flux uncertainty estimates

MC normalized to Data
Config 2

Preliminary
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• Cross-section is produced by unfolding the energy distribution, 
divide by the flux and normalization by efficiency and neutron 
number
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• νμ CC QE cross section measurement for both 
configurations compared with external data

Cross Section as function of energy
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Systematic Uncertainties
• Systematic uncertainties prediction
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Systematic uncertainties dominated by the flux systematic
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Figure 7.14: Fractional error as a function of neutrino energy and fractional error as a
function of four momentum transfer.
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Figure 7.15: Fractional error as a function of momentum and cos ✓.
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Summary
• Detector Prototype provided a valuable input for assembly and 

analysis development

• Quasi-Elastic studies using the data from Detector Prototype is 
limited by statistics and pending a review of the flux uncertainty 
estimates 

• We continue to study neutrino data from Prototype to test 
analysis procedures for NOvA

• Near Detector installation start summer 2013

• First Far Detector beam data coming soon!
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