& B
P:"5\ a2
SN T~

Study of Quasi-Elastic Scattering
in the NOvA Detector Prototype

Minerba Betancourt

University of Minnesota
For the NOvVA Collaboration

New Perspectives 2013 conference
June 11,2013



Outline
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Neutrino production and detector components
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Physics Goals for NOvA

NOvVA: NuMI Off-axis ve Appearance Experiment

NOVA will study V. appearancein v, and ¥, beam
Measure the 03 and search for the mass ordering
Search for the CP violation phase 0
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Neutrino Production
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Detector Components

® Extrusion modules are made from 32 cells
® Single sided readout from 0.7 mm diameter looped WLS fiber
® Cells filled with mineral oil and liquid scintillator

® Avalanche of Photodiodes (APD) converts light to an electrical
signal, actively cooled to -15C
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Detector Prototype

e Detector located on the surface at Fermilab

* Prototype Detector used to test all detector systems:
assembly technique, DAQ, APD installation, scintillator

filling, electronic installation, calibration
Config |
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1 Fully instrumented
Bl Mostly instrumented Commissioning Operations
I Partially instrumented APD tests helped:
[] Uninstrumented * Developed surface coating for APDs to protect the surface

from potential contact with contaminants
Proton On Target (POT) collected: 4 Added an active air drying system to keep out condensation
Configuration |:9.6e+18 due to cooling
Configuration 2: 1.7e+20
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Quasi-Elastic Studies

® Developed a selection criteria to identify the QE interactions and
reject background

® Background for the QE interactions:
e Cosmic muons

* Resonance (RES), Deep Inelastic (DIS), Neutral Current
(NC), Coherent (COH) interactions

CC COH
1%
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Cosmic Background

® Cosmic muons:

Number of tracks

We use a selection to reject the cosmic background: timing cut and the

Reconstructed particle tracks angle
with respect to the beam direction
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We use the data out of time to estimate
the cosmic background



Quasi-Elastic Selection

Using a k Nearest Neighbors Algorithm (kNN) to select muons from QE
interactions, where k is the number of neighbors

Nearest Neighbors Algorithm searches for k events that are closest to a
query event using the Euclidean distance

Nvar
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Quasi-Elastic Selection

® Preselection cuts: v, =
® Event within 10 microsecond beam spill W
® |[nteraction point 50cm from the edge of the detector NS p

® One and only one reconstructed track
® The slope of the tracks is not near vertical (cosmic rejection)
® Track does not exit the detector

® Quasi-Elastic interaction identification using a k Nearest Neighbors
(kNN) algorithm

Studies in MC use channel masks for a partially instrumented detector
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X (cm)

Quasi-Elastic Selection

Preselection cuts:

Event within 10 microsecond beam spill

Interaction point 50cm from the edge of the detector

One and only one reconstructed track

The slope of the tracks is not near vertical (cosmic rejection)

Track does not exit the detector

Quasi-elastic interaction identification using a k Nearest Neighbors (kNN)
algorithm
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Three Input Variables

Simulations

® Using a k Nearest Neighbor (kNN) algorithm with three input
quantities

Mean energy per active plane

. Number of planes
normalized to track length

Energy around the vertex
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: , , , Pions from NC interactions
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energy around the vertex more energy per plane cC
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Energy around the vertex
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Three Input Variables

® Using a k Nearest Neighbors (kNN) algorithm with three input

quantities
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Beam candidates after cosmic background subtraction and Monte Carlo simulation for
preselected events
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Quasi-Elastic Separation

Events

After training the kNN with the input variables on MC samples QE, RES,

DIS and NC events apply it to a different MC sample
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Quasi-Elastic Separation

DIS and NC events apply it to a different MC sample
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MC normalized to Data
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instrumented detector for both configurations
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Neutrino Energy and Q% Reconstruction

® Neutrino energy is reconstructed from the length of the
track and its angle from the beam direction

/

2(M,,) By = ((My,)* +mj; — M)

E, = -
2((M,,) = By + /B2 — m2 cos 6] NG
W+
, N e P
M =M, —Eg and Eg=25MeV

® Four momentum is reconstructed using

Q° = —m;, +2E,(E, — \/El% —m2cost,,)

Minerba Betancourt



Angle and Momentum

® Momentum is obtained from the range of the tracks

Angle Config 2 Momentum Config 2
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Neutrino Energy

® Reconstructed neutrino energy

Config 2
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Neutrino Energy for vy CC QE selected events after cosmic background subtraction
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Four Momentum Transfer

® Reconstructed four momentum transfer

Q° = —m;, +2E,(E, — \/Eﬁ —m2cost,,)
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Four Momentum Transfer

® Selected CC QE four momentum transfer
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Background Study

® Background dominated data with two reconstructed tracks from the interaction
is used to cross check the Monte Carlo for background events

® FEach track has a minimum of four hits in each view

® |ongest track used to determine the energy and four momentum transfer
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® Background data agrees with MC simulations
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Single Ditferential Cross Section

® Single differential cross section

do ) MijNigr
sz N AQ2€Z¢T

e M;; Unfolding matrix

e NoE rate of Quasi-Elastic interactions (Selected -background)
e AQ” bin width

o ¢; efficiency

® ¢ integrated flux

® T number of neutrons

e Unfolding is performed using a Bayesian method
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Single Ditferential Cross Section

e Single differential cross-section is produced by unfolding the Q?
distribution and normalization by efficiency, integrated flux and

neutron number .
MC normalized to Data
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MC is scaled to data to show shape Q7 (GeV")
Preliminary, pending a review of the flux uncertainty estimates
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Cross Section as function of energy

® Cross-section is produced by unfolding the energy distribution,
divide by the flux and normalization by efficiency and neutron

number

15><1o'39 MC normalized to Data
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MC is scaled to data to show shape E(GeV)
Preliminary, pending a review of the flux uncertainty estimates
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Cross Section as function of energy

® Vv, CC QE cross section measurement for both
configurations compared with external data
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Preliminary, pending a review of the flux uncertainty estimates
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Systematic Uncertainties

Systematic uncertainties prediction
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Systematic uncertainties dominated by the flux systematic
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Summary

Detector Prototype provided a valuable input for assembly and
analysis development

Quasi-Elastic studies using the data from Detector Prototype is
limited by statistics and pending a review of the flux uncertainty
estimates

We continue to study neutrino data from Prototype to test
analysis procedures for NOvA

Near Detector installation start summer 2013

First Far Detector beam data coming soon!
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