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735 km 
810 km 



• A long-baseline neutrino oscillation 
experiment 

• Near Detector at Fermilab to 
measure the beam composition 
1km from source and 0.98kton 

• Far Detector deep underground in 
the Soudan Underground Lab, 
Minnesota, to search for evidence 
of oscillations 

• functionally identical to Near 
detector 

•  735 km from source 

 

• Use the upgraded NuMI beam at 
Fermilab. 

• Construct a totally active liquid 
scintillator detector off the main axis 
of the beam. 

• Far detector is 14 mrad off- axis 
and on the surface (14kton). 

• Near detector is also 14 mrad 
off-axis but underground(330ton). 

• Location reduces background. 

• If neutrinos oscillate, electron 
neutrinos are observed at the 
Far Detector in Ash River, 810 
km away. 

 

735 

km 
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NDOS 

Near Det 

MiniBooNE 

Linac: 750 keV – 400 MeV 

Booster: 400 MeV – 8 GeV 

Main Injector: 8 GeV – 120 

GeV 

Slip-stack 11 booster batches 

2 batches to antiproton source 

9 batches to NuMI 

 

 

 

Cycle length is 2.2s 

Typical peak NuMI beam power 

~330 kW in mixed mode 
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Neutrino Production with NuMI 
(Neutrinos at the Main Injector) 

The Beam 

• 120 GeV protons from the Main Injector 

• ~330  kW beam power 

• 10 μs spill of 120 GeV protons every 2.2 s 

• 3.6 1013 protons per pulse 

• Neutrino spectrum changes with target position 
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Neutrino Production with NuMI 
(Neutrinos at the Main Injector) 

The Target and Production 

•Protons strike a graphite target 

• 47 segments, 6.4 x15 x 20mm3(MINOS) 

• ~95.4 cm long or 1.9 interaction length  
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Neutrino Production with NuMI 
(Neutrinos at the Main Injector) 

The Target and Production 

•Protons strike a graphite target 

• 47 segments, 6.4 x15 x 20mm3(MINOS) 

• ~95.4 cm long or 1.9 interaction length  

•Two magnetic focussing horns guide 

mesons, mostly ps + Ks, down decay pipe 
•Pulsed horn current ~200kA 

•3T magnetic field 



• νμ 91.7% 

• anit-νμ 7.0% 

• νe + anti-νe 1.3% 
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• νμ 91.7% 

• anit-νμ 7.0% 

• νe + anti-νe 1.3% 
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• Enhanced 700 kW NuMI beamline 

• Reduce cycle time from 2.2 to 1.3 seconds. 

• Turn Recycler from antiproton to proton ring injection & extraction lines, 

associated kickers & instrumentation, 53 MHz RF  

• Increased intensity/cycle. 

• New  horn and target. 

• 10ms beam pulse 

• 4.9e13 POT/pulse or 6e20 POT/year 
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NOvA: new horn 1 (thinner o.c.) 

Phil Adamson 
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• NuMI target (top) must fit inside 
horn 1 
• Small, mechanically weak. Recent 

problems – failure of water cooling 
lines  

• NOnA target (right) upstream of 
horn 1 (neutrino energy from off-
axis angle) 
• Much more robust design. Water 

cooling 8 times further away from 
beam than NuMI 
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At 14 mrad off-axis, narrow band 
beam peaked at 2 GeV 

 Near oscillation maximum 

 Few high energy NC background events 
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Anti-neutrino Mode 

Horns focus π-, K- 

enhancing the νμ flux 
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νμ ~ 10% 
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n 

MINOS  Is a two detector long-baseline Neutrino Oscillation experiment 

• 735 km baseline from Fermilab 

to Soudan,MN. 

MINOS Near Detector 

• Measure beam composition 

• Measure n energy spectrum 

• 1km from source and 0.98kton 

• 3.8 x 4.8 x 17 m3 

• 100 m underground 

MINOS Far Detector 

• Look for evidence of oscillations by 

comparing spectrum to Near detector 

• functionally identical to Near detector 

• 735 km from source 

• 8 x 8 x 30m3, 700 m underground, 5.4kton 

Near Detector 

Far Detector 
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Multi-anode  

PMTs 

1” Fe 

WLS fibers 

Clear fiber cables 

Extruded PS  

scintillator 

U V 

planes 
Steel plane absorbers  2.54cm thick  

•  Average <B>=1.3 Tesla (Toroidal) 

•  Good muon charge sign identification 

Detector Calibration 

• Light injection to monitor hardware+electronics 

• Cosmic muons used to monitor scintillator response 

• CERN test beam detector set absolute Energy scale 

Having two functionally identical detectors minimizes 

errors due to beam and neutrino interaction uncertainties 

Detectors are steel-scintillating sampling calorimeters 

Scintillating strips measure 4.1 x 1 cm2 

•  strip width is 1.1 Moliere radius  

• have embedded wavelength shifting fibers 

• alternative planes are orthogonal to allow for 

3-D reconstruction of events.  
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beam direction 
color scale represents energy deposition 

nm Charged Current nx Neutral Current ne Charged Current 

long μ track & possible 

hadronic activity at vertex 

short with compact EM 

shower profile 

short with diffuse 

shower 
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No oscillation Prediction: 3564  Observed: 2894 
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Muon Neutrino Oscillation Results 

Muon Antineutrino Oscillation Results 
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No oscillation Prediction: 312 Observed: 226 

in antineutrino mode in neutrino mode 

Antineutrinos in Neutrino Mode 

m2  2.600.23

0.28  103eV2

sin2 (2 )  0.80 (90% C.L. )

No oscillation Prediction: 536  

Observed: 414 



• 14 kton Far Detector 

• 64 % active detector. 

• 344,064 detector cells read by APDs. 

• 0.3 kton Near Detector 

• 18,000 cells (channels). 

• Each plane just 0.15 X0. Great for e- vs π0 . 

32‐pixel 

APD 

Both ends of  a 

fiber to one pixel 

 

Far detector 

14 kton 

986 planes 

 

Near detector 

0.3 kton 

 

Prototype detecor 

0.2 kton 
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𝛾 

Excellent granularity for a detector 

of  this scale 

X0 = 38 cm (6 cell depths, 10 cell widths) 
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Beneficial occupancy of Ash River laboratory on April 13, 2011 
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• Far Detector site construction is 

now complete. 

• The block pivoter is installed at the site. 

• Installation has started. 

• Upgrade NuMI beam from 

• 350 kW to 700kW initiated May 1, 

2012. 

• Near Detector cavern excavation 

and assembly during shutdown. 

• Changed to 96 x 96 cell design to 

improve event containment. 
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NO𝜈A module factory 



• First layer of modules is permanently 
placed on the pivoter table at Ash 
River, MN - July 26, 2012  

• First block installed on September 10 

• Second block installed on October 3. 

•  26 blocks to go 

• Excavation of the Near detector cavern   
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“NDOS” (Near Detector on 

Surface)  

• Component production, 

installation, and integration 

tests and adjustments 

• DAQ development 

• Calibration, simulation, reconstruction 

development using real data 

• Flux and cross sections 

27 

Located in two neutrino beams providing an early look at data and a chance to tune up 

DAQ, calibration, reconstruction, and analysis prior to first data from Ash River 

It saw  neutrinos from NuMI beam at an off-axis angle of 110 mrad. 

NDOS is located ~on the Booster Neutrino Beam (BNB) line, but the detector axis is rotated 

23o with respect to the BNB beamline 



• Near Detector Prototype 

installed on surface at Fermilab. 

• 5000 neutrino events from the 

NuMI beam observed. 

• Neutrino candidate data matches 

well to Monte Carlo. 

 Data is useful for detector 

operations. 

 Benchmarking calibration, 

reconstruction and 

simulations. 
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• Event containment differences 

• In the NOvA Near Detector 82-87% of neutrino events are 

contained. Also Up to 10% of the NC lose a π0. 

• We do not expect these effects to be present in the Far 

Detector. 
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• SciNOvA is an idea to build a 
fine-grained detector (patterned 
after the K2K and SciBooNE 
SciBar detector) and deploy it in 
front of the NOvA near detector 
to: 

 

1.  Aid in the detailed 
understanding of NOvA 
background event topologies 

2.  Measure neutrino cross 
sections, particularly CC QE  
di-nucleon correlations and NC 
π0 production 

30 

“Baseline” is SciBar from 2010 proposal 15k 

bars 1.3 cm x 2.5 cm x 290 cm 

with 1.5 mm fiber to Hamamatsu M64 PMTs 

using “IU IRM” readout boards 

arranged in 64 alternating X/Y layers: 

Currently not part of the NOvA project 



• The NOvA collaboration also considered other options but due 
to budget and/or technology issues we did NOT pursue them. 

 

• Second near detector – with different L/E to cover the 
MiniBooNE low energy range.  

 

• 2 km option for the near detector  

• Reduce the line source effect 

• Reduce the pile-up effect 

 

• Magnetized detector 

• Determine the wrong-sign contamination of the beam. 
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April 2013 
July 2013 

May 2014 
Mar 2014 

Dec 2013 
Sept 2013 



If sin2223 is not maximal 

there is an ambiguity as to 

whether 23 is larger or 

smaller than 45°. 

We will start with neutrino running:  

5σ observation of νμ → νe in first year if normal 

hierarchy and then switch to anti-neutrino running as 

needed.  

Nominal run plan 3 years in each mode at 6 x 1020 POT 

Beam signal Total 

Bkgd 

NC 

bkgd 

nm CC 

bkgd 

ne CC 

bkgd 

neutrino 68 32 19 5 8 

antineutrino 32 15 10 <1 5 

• Significance of mass 

hierarchy resolution using a 

sample counting experiment. 

• Energy fit provides 

improvement on the fully 

degenerate δCP values. 

• NOvA’s will do a few % 

measurement in m2
32 

and sin2223. 

• Improvement of one order 

of magnitude in sin2223. 

• It might not be maximal. 



• MINOS collaboration will continue to take data after the NuMI 

upgrade as the MINOS+ experiment.  

• Inclusive cross section for neutrinos and antineutrinos Phys.Rev. D81 

(2010) 072002 

• Charge current quasi-elastic scattering results – internal review 

• Coherent p0 production – internal review 

 

 

• NOvA very  likely will present first cross section results from the 

near detector at next NuInt2014. 

• See poster by M. Betancourt (Study of Quasi-elastic interactions using the 

NOvA Near Detector Prototype) 
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• Prototype Near Detector on 

Surface (NDOS) –  

• Taking data since November 2010 

• Prototype of the future Near 

Detector 

 

NDOS 

Near Det 

Veto 

Target 

Shower 

containment 

Muon  

catcher 

 

MiniBooNE 
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Veto 

Target 

Shower 

containment 

Muon  

catcher 

 

NDOS 

Near Det 

MiniBooNE 

Near Detector 

• 196 Planes (3m x 4m)  

  + 10 Steel Planes (“Muon Catcher”) 

• 220 Ton 

• 16000 cells 

• Cosmic Ray Muon Rate: 

• ~50 Hz (105 m overburden) 

• In-Spill Rate: 

• 10 ms duration every 1.33 s 

• 30 neutrino events/spill  
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Prototype (NDOS) 

• 196 Planes (3m x 4m)  

  + 10 Steel Planes (“Muon Catcher”) 

• 220 Ton 

•  16000 cells  

• Cosmic Ray Muon Rate: 

• ~ 4 kHz  (on surface) 

• In-Spill Rate: 

•  10 ms duration every 2.2 s 

•  16 neutrino events/day (NuMI + BNB) 

• Partially instrumented 

NDOS 

Near Det 

MiniBooNE 

Near Detector 

• 196 Planes (3m x 4m)  

  + 10 Steel Planes (“Muon Catcher”) 

• 220 Ton 

• 16000 cells 

• Cosmic Ray Muon Rate: 

• ~50 Hz (105 m overburden) 

• In-Spill Rate: 

• 10 ms duration every 1.33 s 

• 30 neutrino events/spill 
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   Main goals are:  

• Test detector design and prepare for  far detector production. 

• Develop DAQ system on custom design hardware 

• Tune calibration procedures. 

• Show electron neutrino selection and e\p0 separation.  

• Verify cosmic background suppression.  
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• NDOS collects data from NuMI and BNB beams 

 

 

 

 

 

 

• Quasi-elastic cross section at 1 and 2 GeV. 

• Study nuclear hadronization models and multinucleon production.  

 

 

 

 

PoT NuMI Cosmic Bg 

Neutrino 5.6e18 253 39 

Antineutrino 8.4e19 1001 69 

PoT BNB Cosmic Bg 

Antineutrino 3e19 222 92 

 NuMI off-axis 110 mrad 

   

• <En> ~ 2 GeV 

• L ~ 850 m 

• L/E~0.43 km/GeV 

Booster (BNB)  on axis but rotated wrt 

to the beam 

• <En> ~ 0.8 GeV 

• L ~ 650 m 

• L/E~0.8 km/GeV 
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• Liquid scintillator (3 million gallons) 

• Contained in 3.9cm x 6.6 cm cells of 

 length 15.6 meters 

• 3.9 cm as seen by the beam 

• Cell walls are rigid PVC (5 kilotons)  

• Loaded with 15% anatase form of 

 titanium dioxide 

• Diffuse reflection at walls keeps light 

 near (within ~ 1 m) particle path 

• Looped wavelength-shifting fiber collects 

 light (11,160 km) 

• Fiber diameter 0.7 mm 

• Fiber shifts wavelength to ~ 520-550 nm along the 
fiber 

• Avalanche photodiode (APD) converts light to electrical 
signal (11,160 devices, ea. 32 pixels) 

• 85% quantum efficiency 

To 1 APD pixel

W D

typical

charged

particle

path

L

To 1 APD pixel

W D

typical

charged

particle

path

L
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• Liquid scintillator for NOνA is composed of a primary scintillant 
(pseudocumene) that gives off light at 300 nm, 

•  waveshifters (PPO & bis-MSB) that downshift the UV photons to 
longer wavelength to facilitate absorption by the wavelength 
shifting (WLS) fibers (convert the photons to 420 nm), 

•  anti-static agent (Stadis) that prevents the build-up of static 
electricity. 

• The “fluor mix” + anti-static are dissolved in a mineral oil solvent 
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K27 dye @ 300 ppm, S-type 

Michigan State 

Need ~ 12,000 km of 0.7 mm diameter wavelength 

shifting fiber from Kuraray.  So far ~10% received 

and tested 

 MSU Quality Assurance Scanner (duplicate at Kuraray 
factory) 

  Fiber wound on a drum in a 27 m long groove with 
holes on 1 m intervals 

 Fiber is NOT cut from the spool, 

 Light source illuminates fiber from within the drum 

  Total light output (photodiode) and spectrographic 
scans, each ~ 1 minute 
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 APD is a classic linear APD manufactured by 
Hamamatsu operated at a gain (M) of 100 
 S11211(X) custom variant of commercial S8550 

SiAPD 

 Operating temperature is -15°C to keep shot 
noise at the same level as the amplifier noise 

 Signal-to-noise > 10 for muon at far end of a 
15m long cell 

 Both ends of the fibers  

in each cell are read with  

a single APD 
 

 32 APDs in a single  

4  8 array to readout  

one module 

Manufacturer 

Pixel Active Area 1.95 mm × 1.0 mm 

Pixel Pitch 2.65 mm 

Array Size 32 pixels 

Die Size 15.34mm × 13.64mm 

Quantum Efficiency (>525 nm) 85% 

Pixel Capacitance 10 pF 

Bulk Dark Current (IB) at 25 C 12.5 pA 

Bulk Dark Current (IB) at -15 C 0.25 pA 

Peak Sensitivity 600 nm 

Operating Voltage 375 ± 50 volts 

Gain at Operating Voltage 100 

Operating Temperature (with 

Thermo-Electric Cooler) 

-15ºC 

Expected Signal-to-Noise Ratio 

(Muon at Far End of Cell) 

10:1 

APD channels per plane 384 

APD arrays per plane 12 

Total number of planes 930 

Total Number of APD arrays 11,160 

APD pixels total 357,120 
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Side seals 

Center 

seal 

End plate 

Extrusion assembly 

Module Architecture 
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Face of optical 

connector 

Threading fibers 

into opt conn 

• Registers fibers in 
optical connector 

• Guarantees acceptable 
bend radius 

• Shields fibers from 
events in manifold 

• Facilitates assembly 
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Antineutrinos HE neutrinos 



• Increase NuMI primary 
proton beam power 

• 330 (380) kW -> 700 kW 

• Additional focus on loss 
control 

• Double the beam power 

• Same tunnels 

• Change neutrino beam 
energy (focussing) 

• Optimize flux at off-axis 
NOnA location 
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• Move slip-stacking to 
recycler 

• 11 batch -> 12 batch 

• Increase Main Injector ramp 
rate (204 GeV/s -> 240 
GeV/s) 

• 330 (380) -> 700kW with 
only ~10% increase in per-
pulse intensity 
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• Remove: 

• Old transfer lines 

• Small aperture (pbar: 6p/2p, 
protons: 1520p) 

• Stochastic cooling 

• Electron cooling 

• Pelletron 

• Rebuild MI-30 with FODO 
lattice 

• Various odds and ends 
that might be aperture 
restrictions 

• Add: 

• New injection line from MI8 
to recycler 

• New RR->MI transfer line 

• 53 MHz RF system for slip-
stacking 

• Instrumentation 

• BPMs 

• Low-mass Ti multiwires 

• IPMs 

• Must maintain vacuum at 
10-10 – 10-11 torr (TSPs) 
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• Switched dipole at 849 

• ADCW (wide-gap 
modification of old ADC 
magnet) 

• Strontium Ferrite 
permanent magnet dipoles 
like rest of MI-8 

• Two Samarium Cobalt 
dipoles (space constraints) 

• Strontium Ferrite recycler 
quads, powered quad 
trims for lattice matching 
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• 1-week 

shutdown in 

March 2011 

• Electric 

company 

replacing 

switchgear 

offsite 

• Installed first 

PDD magnet in 

new MI8 
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• New permanent quads 
for 30 straight in 
recycler 

• Total cost cheaper than 
re-making existing 
quads 

• ALARA 



• Build 3 RF cavities 

• A, B and hot spare 

• 150 kV per cavity 

• Operating range:  

52.809 MHz ± 1260 Hz 

• 10 KHz fast (~40 µs) phase 

shifters from Proton Driver 

• Recycle PAs and 

modulators from Tevatron 

• LLRF close to a copy of MI 

system 
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• Currently place 81 
bunches every 86 in MI 

• For NOnA, place 81 
bunches every 84 in 
Recycler. (84 = 588/7) 

• Faster rising/falling edges 
-> many short kickers (6) 

• Already have 7 RKA 
magnets in MI: Gap 
Clearing Kicker system for 
loss control 
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6/7 magnets 

will move up to 

recycler for 

NOnA  
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• Edges within 

specification 

• Slower edge in 

damper 

measurement 

might be 

artifact 

Damper (beam) 

measurement  

Calculated B from 

measured voltages 

• For recycler, building “tail bumper” 

to cancel tail 

• Tail measurement similar to 

electrical measurements (good) 
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Green points: contact 

measurement at V105 

GCK on for a 

week 

Already as low as 
end of 2009 
shutdown 

GCK reducing local losses 



• 2 new MI cavities to 
maintain bucket area 

• New transformer for 
vertical quad bus 

• Increased heat load on 
cooling ponds 
• Will need more cooling for 

summer – study underway 
looking at future cooling 
needs (not just NOnA ) 
• More ponds? 

• Run a chiller in summer? 

• Shade ponds?  
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• Increase rep rate 

• 2.2s (2.0s) -> 1.33s 

• Replace 5 3Q120 quads 
with ones from A150 
beamline (better cooling) 

• Upgrade magnet power 
supplies 

• Faster ramp 

• BULB 

• Better regulation 

• Current monitor -> beam 
permit 

• New kicker power supply 

 

• Beam intensity doubled, 
but beam loss in water-
bearing rock must not 
double 

• New 1 mil Ti multiwires - 
lower mass in beam 
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