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Abstract
We used a muon telescope to calculate the cosmic ray background at the NOvA site and determine how effective the barite and other rock around the detector were at shielding.  The cosmic ray flux was found to be 0.0053 ± 7.1x10-5 muons cm-2sr-1s-1 under the barite which is   29 ± 1.4% less than the flux outside. The rate of electromagnetic showers is 0.0028 ± .0006 showers per second which is 77 ± 5.3% less than the rate outside.
Background:

NOvA is an acronym for the NuMI Off-Axis Neutrino Appearance experiment, a second-generation long-baseline experiment for the determination of electron and muon neutrino oscillation parameters.  The far detector is to be installed in a 60 foot deep concrete-lined cavern that has been excavated from the granite surface.  This ensures a modest level of protection from wide angle and horizontally-oriented secondary and tertiary cosmic rays.  To properly mitigate the vertical background events, the detector hall incorporates a 6 inch layer of barite and a loose granite overlay on top of a thin concrete roof, the combination of materials effectively equating to a 4-foot thick concrete layer[1].  A solid model of the mock-up of the far detector under construction is shown in Figure 1.
 (
Figure 1. Solid mock-up of the 
NOvA
 Far Detector hall. The closer edge is the north end and the farther part is the south. The large brown rectangle is the detector.
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The focus of this project is to expound on the work done by Alex Walter by gathering sufficient measurements of the muon flux and electromagnetic showers at different locations inside and outside of the NOvA far detector building to provide a more detailed measured result of how well the barite shielding reduces background particles all over the NOvA hall.


Design:

The muon telescope is made up of four plywood boxes named "alpha", "beta", "gamma", and "delta" stacked on top of each other. Each box measures 56.64 ± .05cm x 56.64 ± .05cm x 72.65 ± .05cm and contains a 5 inch photomultiplier tube (PMT) and a 45.72 ± .05cm x 45.72 ± .05cm x 1.91 ± .05cm piece of plastic scintillator. The stacked boxes have an acceptance of 88.4 ± .36 cm2sr which was obtained using a Monte Carlo simulation which is discussed in detail in Appendix A. The stack of boxes has a column depth of 4.8 g/cm2 which makes and Energy threshold of 35.05 MeV. The boxes have a plywood shelf located 15 cm from the lid where the PMT is mounted using a mirrored wooden base. The inside of each box below the shelf is lined with a white cloth, so it won’t absorb the photons emitted from the scintillator.  The base of the PMT lies above the shelf with a high voltage and signal cable running from the base to a small hole in the side of the box.  To prevent outside light from reaching the PMT, black trash bags and duct tape were used around the edges of the shelf and base of the PMT to lightproof the box. How the muon telescope is assembled is shown in Figure 2.
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                                        Figure 2. Muon telescope pieces (left), schematic (center) and full stack (right).


Each high voltage cable is connected to a 4-channel Bertan Model 380 N 10 kV power supply with a cable conversion module.  Each signal cable is connected to a QuarkNet DAQ card[2] where the threshold voltage can be adjusted by changing the resistance on a trim pot.  The DAQ card is connected to a computer where specific settings for the card can be changed including gate width, tmc delay, seconds, events, singles seconds, and coincidence.  The coincidence can be set between one and four depending on the number of boxes that need to be triggered to count as a coincidence hit. The seconds and events indicate when the card will stop taking data or start a new file depending on whether a specified amount of time or number of events is reached first.  Singles seconds tells the card how often to report the singles rates for each of the boxes.  The tmc delay is how much time is given to create a coincidence event. The tmc delay is set to the time it takes for a muon to go from the top piece of scintillator to the bottom, and it starts counting down as soon as the first event is recorded.  The gate width is the duration after the first event in a trigger during which you want to record all successive events. The events are only saved if there is a coincidence recorded within the tmc delay. 
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 (
Figure 4. Picture of the 
QuarkNet
 DAQ card. The circled trim pots adjust the threshold voltage. 
)[image: ]
 (
Figure 3. High Voltage Power Supply (orange panels)
)


In this experiment we took two hour measurements with the coincidence set to four.  Singles rates were recorded every 100 seconds and gate width and tmc delay were set to the default 10 and 6 respectively. The singles rates and the rate of accidental coincidences are discussed later in the results section.  The values for gate width and tmc delay represent clock ticks, so to convert this to an actual time measurement we multiplied them by 24 ns per clock tick.  This means there was a 144 ns window to achieve a coincidence event and a 240 ns window to record successive events. We made one electromagnetic shower measurement at NOvA where the boxes made the corners of a six foot square. For the electromagnetic shower measurement the settings were changed to a gate width of 150 and a tmc delay of 50. Times for the tmc delay and gatewidth were chosen to allow coincidences to occur even if there are long cable delays and as noted later the rate of accidental coincidences is small enough that it won’t play a role even with larger windows.

Optimization tests were conducted to find the ideal high voltage and threshold voltage settings.  The high voltage for each box was adjusted in increments of 10-20 volts through several trials and singles rates for each box and coincidences were collected.  The optimized values for the boxes were 1079 V for alpha, 1026 V for beta, 1252 V for gamma and 1249 V for delta.  The threshold values for each channel of the DAQ card were initially set to 0.050 V and 5 minute trials of 4-box coincidences and singles data were also collected.  This procedure was repeated by increasing the threshold voltage of each channel on the DAQ by 0.010 V and then collecting singles and coincidence data. Taking a derivative of this data by subtracting consecutive singles rates revealed a peak in the data shown by the red dot in the graphs below where we were counting nearly all of the muons with limited background noise.  To make sure we counted all of the muons we set the optimal voltage just below this point knowing that a coincidence of four boxes and our calculated accidental coincidence rate would factor out most background noise. A graph of the change in singles rate vs. threshold voltage for each channel (figure 5) revealed optimal thresholds for alpha at 0.095 V, beta at 0.075 V, gamma at 0.095 V and delta at 0.105 V.  These settings gave consistent singles rates for all four boxes and a coincidence rate of 0.008 hits per second. 

 (
Figure 5. Threshold voltage optimization graphs.
)
	Box
	Threshold Voltage V
	High Voltage V
	Muon Rate hz

	Alpha
	0.0950
	1037
	24.0251

	Beta
	0.075
	1026
	23.4774

	Gamma
	0.095
	1252
	24.1106

	Delta
	0.105
	1249
	23.5176

	4-box coincidence
	0.487437


 (
Table 1.  High-Voltage and Threshold settings for telescope boxes in final calibration.
)

[image: ]In order to make reasonable measurements of muon flux in the NOvA far detector hall, it was decided that a total of 10 flux measurements would be made inside the building:  9 near the centerline of the hall and 1 outside the rails near the middle of the hall on the east side.  The 9 measurements were broken down into 3 sets at approximately the south, middle and northern portions of the future far detector installation.  At each of these locations, a vertical and +/- 21 degree from vertical measurement was taken.  Tilting was achieved by building a cradle around the stack of boxes and using a pallet jack and wedge to position the telescope to the desired angle.  The indoor measurement locations (in meters) are summarized below in Figure 6 (viz. dots superimposed on white background).   An electromagnetic shower measurement was also made near the southern-most third of the future detector location (small cluster of squares representing the array).  A baseline measurement of ambient outdoor flux was to be made on the west side of the facility on the concrete receiving dock and its relative location is summarized in Figure 7 (again in meters) 
 (
Figure 6. Locations of measurements inside the 
NO
v
A
 hall are indicated by the brown boxes, with the four boxes indicating the location of the electromagnetic shower measurement.
)
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Figure 7.   Location of outside 
muon
 flux measurement the 
NOvA
 site.
 
)
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Results:	
The singles counts, singles rates, coincidence counts and coincidence rates are listed below, along with the location at the NOvA site it was taken at and how long it was taken for.  The location is formatted as: location in the detector hall (South, Middle, or North) and the angle and direction the telescope is pointing in degrees.  The second-to-last measurement was taken along the side of the hall, and the last measurement was taken outside.  S is for the total counts and R is for the rates.  The subscripts represent the channels with 0 as the box on the top and 3 being the box on the bottom.
 (
Table 2. 
Muon
 flux measurement data.
)
	Location
	Time (s)
	S0
	R0
(1/s)
	S1
	R1
(1/s)
	S2
	R2
(1/s)
	S3
	R3
(1/s)

	S-0
	7200
	112,922± 336
	15.68 ± .05
	116,876
± 341
	16.23 ± .05
	105,768± 325
	14.69 ± .04
	74,790  ± 273
	10.39 ± .04

	S-21-E
	7200
	103,221± 321
	14.34 ± .05
	114,865 ± 339
	15.95 ± .05
	101,747± 319
	14.13 ± .04
	73,769  ± 272
	10.25 ± .04

	S-21-W
	7200
	111,235± 334
	15.45 ± .05
	112,404 ± 335
	15.61 ± .05
	99,362  ± 315
	13.80 ± .04
	84,432  ± 291
	11.73 ± .04

	M-0
	7200
	165,983± 407
	23.05 ± .06
	158,756 ± 398
	22.05 ± .06
	161,571± 402
	22.44 ± .05
	151,987± 390
	21.11 ± .05

	M-21-E
	7200
	153,994± 392
	21.38 ± .05
	149,539 ± 387
	20.77 ± .05
	151,988± 390
	21.11 ± .05
	144,135± 380
	20.01 ± .05

	M-21-W
	7200
	152,076± 390
	21.12 ± .05
	153,088 ± 391
	21.26 ± .05
	155,245± 394
	21.56 ± .05
	145,027± 381
	20.14 ± .05

	N-0
	6500
	156,993± 396
	24.15 ± .06
	153,117 ± 391
	23.55 ± .06
	154,297± 393
	23.74 ± .06
	153,679± 392
	23.64 ± .06

	N-21-E
	7200
	157,550± 397
	21.88 ± .06
	162,295 ± 403
	22.54 ± .06
	168,776± 411
	23.44 ± .06
	149,077± 386
	20.71 ± .05

	N-21-W
	7200
	161,046± 401
	22.37 ± .06
	158,616 ± 398
	22.03 ± .06
	160,532± 401
	22.30 ± .06
	161,638± 402
	22.45 ± .06

	M out E
	7200
	142,656± 378
	19.81 ± .05
	138,183 ± 372
	19.19 ± .05
	137,295± 371
	19.07 ± .05
	133,330± 365
	18.51 ± .05

	Outside- 0
	1800
	73,609  ± 271
	40.89 ± .15
	68,526    ± 262
	38.07 ± .15
	61,696  ± 248
	34.28 ± .14
	73,020  ± 270
	40.57 ± .15




 (
Table 2 cont. 
Muon
 flux measurement data.
)
	Location
	Coincidences
	Coincidence rate (1/s)
	Flux (1/cm2/sr/s) x10-3

	S-0
	1616 ± 40
	.224 ± .004
	2.53 ± .046

	S-21-E
	1384 ± 37
	.192 ± .005
	2.17 ± .067

	S-21-W
	1673 ± 41
	.232 ± .005
	2.62 ± .056

	M-0
	3245 ± 57
	.451 ± .009
	5.10 ± .10

	M-21-E
	2688 ± 52
	.373 ± .007
	4.22 ± .081

	M-21-W
	2812 ± 53
	.391 ± .008
	4.42 ± .092

	N-0
	3091 ± 56
	.475 ± .009
	5.37 ± .10

	N-21-E
	2860 ± 53
	.397 ± .008
	4.49 ± .094

	N-21-W
	2824 ± 53
	.392 ± .008
	4.43 ± .098

	M out E
	3211 ± 57
	.446 ± .009
	5.05 ± .010

	Outside 0
	1004 ± 32
	.66 ± .021
	7.46 ± .11

	Standard sea level[3]
	
	
	8.2



The rate of accidental coincidences is RAcc = 4T3R0R1R2R3 where T is the tmc delay. The accidental rate for S-0 is 6.68x10-23 which is 22 orders of magnitude smaller than the measured coincidence rate.  All of the other accidental coincidence rates are of similar orders of magnitude which means none of them will factor in to the calculations.
The flux is obtained by dividing the rate by the acceptance of the muon telescope which is      88.4 ± .36 cm2sr.
The outside flux measurement is less than the standard measurement because of the 35.05 MeV energy threshold. We were unable to find an equation that would model the expected rate loss well at such low energies but the change is in the right direction for having some of the muons not having enough energy to be make it all the way through the telescope and be counted. 
The south end had 50.4±1.3% less flux than the middle and an even smaller percentage than the north end. This is because there is a concrete wall on the south end of the hall but in the middle and on the north the wall is far enough away to not interfere with the muons. The north end has the highest flux because some of the muons can come in at an angle that would miss the barite shielding and cause an increased amount of muons that can get into the telescope from the northern direction than middle or south. On the sides of the hall the flux is also less because again like the south wall there is a concrete wall for the muons to go through. 
When the telescope was tilted at 21 degrees there was a decreased flux through the telescope due to the angular dependence of muon intensity. With the exception of the south end pointing west all of the measurements at an angle are less than the measurement upright at the same location. The south end had a smaller upright flux so the amount flux was reduced by the telescope being tilted is smaller. Because the upright count is lower at the south end leading to a lower change in flux when the telescope was tilted and a higher percent error caused the measurement to probably be a fluke.  
 (
Table 3. Electromagnetic shower measurement data.
)The electromagnetic shower data is in the same format as the flux data.

	Location
	Time (s)
	S0
	R0
(1/s)
	S1
	R1
(1/s)
	S2
	R2
(1/s)
	S3
	R3
(1/s)

	M-0
	7200
	149,057± 386
	20.70 ± .05
	132,845± 364
	18.45 ± .05
	138,692± 372
	19.26 ± .05
	152,901± 391
	21.24 ± .05

	UMD outside
	10800
	419,394± 648
	38.83 ± .06
	438,878± 662
	40.64 ± .06
	467,513± 684
	43.29 ± .06
	473,122± 688
	43.81 ± .06


 (
Table 3 cont. Electromagnetic shower measurement data.
)

	Location
	Electromagnetic showers
	Electromagnetic shower rate (1/s)

	M-0
	20 ± 4.5
	0.0028 ± .0006

	UMD outside
	130 ± 11.4
	0.0120 ± .001



There is no absolute number for the showers to compare to a standard because the first few feet on the outside will be used to tag and remove electromagnetic showers from the data and the acceptance calculations for the electromagnetic shower configuration are difficult. 

Conclusions: 
	The barite and other material on the roof of NOvA reduced the flux of incoming muons at the north and middle portions of the hall by 29 ± 1.4% compared to outside flux measurements.  At the south end, the muon flux was reduced by 67 ± .8%.  We saw greater shielding at the south end of the hall due to the large concrete wall located at the southern end of the chamber which shielded particles along with the barite.  The barite also reduced the amount of electromagnetic showers by 77 ± 5.3%.
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Appendix A:
Monte Carlo C++ code
The code was written to determine the acceptance of the muon telescope along with the error in the acceptance.  There are three main parts of the code:  the first is to generate a random error in the length, width, and height of the detector with a Gaussian probability around zero, the next is to compute the acceptance and solid angle of our detector by generating random incoming muon angles and locations to see if the muons travel through all four detectors, lastly take acceptance and solid angles with all the different errors and compute the mean and standard deviation of all them.
The following lines of code generate a random number with Gaussian probability using the Box-Muller transform.  It then multiplies the randomly generated number by the error in the measurement of the dimension to give it the appropriate standard deviation and adds that to the measured length to make the Gaussian around the measured dimension.
      //loop to generate a random error in the measured dimensions
      for(int n=0; n<errors; n++)
    {
      //creates random numbers on a gaussian
          u1=static_cast<double>(rand())/RAND_MAX;
      // ofstream RNG1("u1Rand.txt",ios::app);
      //RNG1<<u1<<endl;
          u2=static_cast<double>(rand())/RAND_MAX;
      // ofstream RNG2("u2Rand.txt",ios::app);
      //RNG2<<u2<<endl;
      u3=static_cast<double>(rand())/RAND_MAX;
      //ofstream RNG3("u3Rand.txt",ios::app);
      //RNG3<<u3<<endl;
      u4=static_cast<double>(rand())/RAND_MAX;
      //ofstream RNG4("u4Rand.txt",ios::app);
      //RNG4<<u4<<endl;
      gauss1=sqrt(-2*log(u1))*cos(2*pi*u2);
      //ofstream GAUSS1("gauss1.txt",ios::app);
      //GAUSS1<<gauss1<<endl;
      gauss2=sqrt(-2*log(u1))*sin(2*pi*u2);
      //ofstream GAUSS2("gauss2.txt",ios::app);
      //GAUSS2<<gauss2<<endl;
      gauss3=sqrt(-2*log(u3))*cos(2*pi*u4);
      //ofstream GAUSS3("gauss3.txt",ios::app);
      //GAUSS3<<gauss3<<endl;
          x_rand_error=gauss1*x_error;
      //ofstream xerror("XError.txt",ios::app);
      //xerror<<x_rand_error<<endl;
          y_rand_error=gauss2*y_error;
      //ofstream yerror("YError.txt",ios::app);
      //yerror<<y_rand_error<<endl;
          h_rand_error=gauss3*height_error;
      //ofstream herror("HError.txt",ios::app);
      //herror<<h_rand_error<<endl;
      // calculate the dimensions with errors
      x_dim=x_in+x_rand_error;
      //ofstream Xdim("Xdim.txt",ios::app);
      //Xdim<<x_dim<<endl;
      y_dim=y_in+y_rand_error;
      //ofstream Ydim("Ydim.txt",ios::app);
      //Ydim<<y_dim<<endl;
      height=height_in+h_rand_error;
      //ofstream Hdim("height.txt",ios::app);
      //Hdim<<height<<endl;

	This piece of code generates a random incoming muon and tests to see if it would hit all four detectors.  First it picks a spot on the top plate to hit by generating an x and a y coordinate.  Then it generates a random phi and cosine theta for an angle for the muon to travel.  It creates a cosine theta instead of theta because it needs to generate evenly spaced pieces of area on the sky and if it generated theta the smaller angles would be farther apart.  It then calculates whether or not it hit the bottom plate and if it did it stores it as a good event and if it didn’t it tosses it.  It then calculates the acceptance as the product of the x and y dimensions, the average cosine theta of the good events, the ratio of good events to total events, and two pi.  It then adds the acceptance to a total to calculate the mean and standard deviation.
       //loop to generate events number of trials
      for(int i=0; i<events; i++)
    {
      //initialize test variables
      x_pass=0;
      y_pass=0;
      //generate randnum number for x and y locations
      // and for the theta and phi angles
      x_rand=(static_cast<double>(rand())/(RAND_MAX/x_dim));
      y_rand=(static_cast<double>(rand())/(RAND_MAX/y_dim));
      CosTheta=static_cast<double>(rand())/RAND_MAX;
      phi=(static_cast<double>(rand())/(RAND_MAX/(2*pi)));
      theta=acos(CosTheta);
      //calculate the location on the other plate with the variables
      hyp=height/CosTheta;
      x_loc=hyp*sin(theta)*cos(phi)+x_rand;
      y_loc=hyp*sin(theta)*sin(phi)+y_rand;
      // check to see if its a good event
      if (x_loc>=0 && x_loc<=x_dim)
        {
          x_pass++;
        }
      if (y_loc>=0 && y_loc<=y_dim)
        {
          y_pass++;
        }
      if (x_pass==1 && y_pass==1)
        {
          // if good increment total passed and total cosine of theta
          total_pass++;
          TotCosTheta+=CosTheta;
        }
    }
      //compute averages and pass ratio
      PassRatio=1.0*total_pass/events;
      //cout<<total_pass<<"\n";
      //cout<<PassRatio<<"\n";
      AvgCosTheta=TotCosTheta/total_pass;
      //cout<<AvgCosTheta<<"\n";
      //comput solid angle
      SolidAngle=PassRatio*2*pi;
      //compute acceptance
      acceptance=AvgCosTheta*x_dim*y_dim*SolidAngle;
      //read out acceptance and solid angle
      //cout<<"The acceptance is "<<(acceptance)<<"\n";
      //cout<<"The solid angle is  "<<SolidAngle<<"\n";
      //total all the acceptances and solid angles
      TotalAcceptance+=acceptance;
      TotalSAngle+=SolidAngle;
      AllAcceptance[n]=acceptance;
      AllSAngle[n]=SolidAngle;
      ofstream ACCEPTANCE("Acceptance.txt",ios::app);
      ACCEPTANCE<<acceptance<<endl;
      ofstream SANGLE("SolidAngle.txt",ios::app);
      SANGLE<<SolidAngle<<endl;
    }

The following lines of code take the sum of all the acceptances and calculate a mean acceptance. Then with the mean it calculates a standard deviation.

          // calculate the mean acceptance and solid angle
      MeanAcceptance=TotalAcceptance/errors;
      MeanSAngle=TotalSAngle/errors;
      //calculate the standard deviations on the acceptance and solid angle
      for (int i=0;i<errors;i++)
    {
      TDevAcceptance+=(AllAcceptance[i]-MeanAcceptance)*(AllAcceptance[i]-MeanAcceptance);
      TDevSAngle+=(AllSAngle[i]-MeanSAngle)*(AllSAngle[i]-MeanSAngle);
    }
      STDevAcceptance=sqrt(TDevAcceptance/(errors-1));
      STDevSAngle=sqrt(TDevSAngle/(errors-1));

The code in its entirety.
// a program to determine the acceptance and solid angle of a particle
// detector using monte carlo methodes 
// by Travis Olson 07/22/11
#include<iostream>
#include<cstdlib>
#include<math.h>
#include<fstream>
#include<ctime>
#include<iomanip>
#include<vector>

using namespace std;

int main()
{
  // randomly generated variable
  long double x_rand,y_rand,theta,phi,CosTheta,u1,u2,u3,u4,gauss1,gauss2,gauss3;
  long double x_rand_error,y_rand_error,h_rand_error;
  //user imput variables
  long double x_error,y_error,height_error;
  long int events,errors;
  long double x_in,y_in,height_in;
  // calculated dimensions with errors
  long double x_dim,y_dim,height;
  // location on other plate variables
  long double x_loc, y_loc, hyp;
  //variables for checking whether or not an event is good
  int x_pass,y_pass,total_pass;
  //pi
  double pi=3.14159265;
  // totals for cosine theta and phi
  long double TotCosTheta=0;
  // averages for cosine theta
  long double AvgCosTheta;
  // store the acceptance
  long double acceptance=0;
  // store the solid angle
  long double SolidAngle=0;
  //ratio of passed to failed
  long double PassRatio,ctr_PassRatio;
  // variables for calculating means
  long double TotalAcceptance=0,TotalSAngle=0;
  long double MeanAcceptance, MeanSAngle;
  // variables for calculating the standard deviations
  vector<long double> AllAcceptance(0);
  vector<long double> AllSAngle(0);
  long double STDevAcceptance, STDevSAngle;
  long double TDevAcceptance=0, TDevSAngle=0;
  // seeding the random number generator
  srand(time(0));
  // request and read inputs for the dimensions and number of trials
    cout<<"How many events do you want to use to measure? \n";
    cin>>events;
    cout<<"How many different errors do you want to test? \n";
    cin>>errors;
    cout<<"What is the x dimension of the detector? \n";
    cin>>x_in;
    cout<<"What is the error in the x dimension? \n";
    cin>>x_error;
    cout<<"What is the y dimension of the detector? \n";
    cin>>y_in;
    cout<<"What is the error in the y dimension? \n";
    cin>>y_error;
    cout<<"What is the distance between the top and botton plate of the detector? \n";
    cin>>height_in;
    cout<<"What is the error in the distance between the plates? \n";
    cin>>height_error;
  // check to see if the dimensions and number of trials makes sense
  // if not yell at the user
  if(events<=0)
    {
      cout<<"Enter at least 1 for the number of events. \n";
    }
  else if (errors<=0)
    {
      cout<<"Enter a value of at least 1 for the number of errors. \n";
    }
  else if (x_in<=0)
    {
      cout<<"Enter a value greater than 0 for the x dimension. \n";
    }
  else if (y_in<=0)
    {
      cout<<"Enter a value greater than 0 for the y dimension. \n";
    }
  else if (height_in<0)
    {
      cout<<"Enter a value of at least 0 for the height. \n";
    }
  else if (x_error<0)
    {
      cout<<"Enter a value of at least 0 for the error in x. \n";
    }
  else if (y_error<0)
    {
      cout<<"Enter a value of at least 0 for the error in y. \n";
    }
  else if (height_error<0)
    {
      cout<<"Enter a value of at least 0 for the error in the height. \n";
    }
  else
    {
      //set the size of the vectors
      AllAcceptance.resize(errors);
      AllSAngle.resize(errors);
      //loop to generate a random error in the measured dimensions
      for(int n=0; n<errors; n++)
    {
      //creates random numbers on a gaussian
          u1=static_cast<double>(rand())/RAND_MAX;
      // ofstream RNG1("u1Rand.txt",ios::app);
      //RNG1<<u1<<endl;
          u2=static_cast<double>(rand())/RAND_MAX;
      // ofstream RNG2("u2Rand.txt",ios::app);
      //RNG2<<u2<<endl;
      u3=static_cast<double>(rand())/RAND_MAX;
      //ofstream RNG3("u3Rand.txt",ios::app);
      //RNG3<<u3<<endl;
      u4=static_cast<double>(rand())/RAND_MAX;
      //ofstream RNG4("u4Rand.txt",ios::app);
      //RNG4<<u4<<endl;
      gauss1=sqrt(-2*log(u1))*cos(2*pi*u2);
      //ofstream GAUSS1("gauss1.txt",ios::app);
      //GAUSS1<<gauss1<<endl;
      gauss2=sqrt(-2*log(u1))*sin(2*pi*u2);
      //ofstream GAUSS2("gauss2.txt",ios::app);
      //GAUSS2<<gauss2<<endl;
      gauss3=sqrt(-2*log(u3))*cos(2*pi*u4);
      //ofstream GAUSS3("gauss3.txt",ios::app);
      //GAUSS3<<gauss3<<endl;
          x_rand_error=gauss1*x_error;
      //ofstream xerror("XError.txt",ios::app);
      //xerror<<x_rand_error<<endl;
          y_rand_error=gauss2*y_error;
      //ofstream yerror("YError.txt",ios::app);
      //yerror<<y_rand_error<<endl;
          h_rand_error=gauss3*height_error;
      //ofstream herror("HError.txt",ios::app);
      //herror<<h_rand_error<<endl;
      // calculate the dimensions with errors
      x_dim=x_in+x_rand_error;
      //ofstream Xdim("Xdim.txt",ios::app);
      //Xdim<<x_dim<<endl;
      y_dim=y_in+y_rand_error;
      //ofstream Ydim("Ydim.txt",ios::app);
      //Ydim<<y_dim<<endl;
      height=height_in+h_rand_error;
      //ofstream Hdim("height.txt",ios::app);
      //Hdim<<height<<endl;
      // initialize total good events variable
      total_pass=0;
      // initialize total cosine theta
      TotCosTheta=0;
      //loop to generate events number of trials
      for(int i=0; i<events; i++)
    {
      //initialize test variables
      x_pass=0;
      y_pass=0;
      //generate randnum number for x and y locations
      // and for the theta and phi angles
      x_rand=(static_cast<double>(rand())/(RAND_MAX/x_dim));
      y_rand=(static_cast<double>(rand())/(RAND_MAX/y_dim));
      CosTheta=static_cast<double>(rand())/RAND_MAX;
      phi=(static_cast<double>(rand())/(RAND_MAX/(2*pi)));
      theta=acos(CosTheta);
      //calculate the location on the other plate with the variables
      hyp=height/CosTheta;
      x_loc=hyp*sin(theta)*cos(phi)+x_rand;
      y_loc=hyp*sin(theta)*sin(phi)+y_rand;
      // check to see if its a good event
      if (x_loc>=0 && x_loc<=x_dim)
        {
          x_pass++;
        }
      if (y_loc>=0 && y_loc<=y_dim)
        {
          y_pass++;
        }
      if (x_pass==1 && y_pass==1)
        {
          // if good increment total passed and total cosine of theta
          total_pass++;
          TotCosTheta+=CosTheta;
        }
    }
      //compute averages and pass ratio
      PassRatio=1.0*total_pass/events;
      //cout<<total_pass<<"\n";
      //cout<<PassRatio<<"\n";
      AvgCosTheta=TotCosTheta/total_pass;
      //cout<<AvgCosTheta<<"\n";
      //comput solid angle
      SolidAngle=PassRatio*2*pi;
      //compute acceptance
      acceptance=AvgCosTheta*x_dim*y_dim*SolidAngle;
      //read out acceptance and solid angle
      //cout<<"The acceptance is "<<(acceptance)<<"\n";
      //cout<<"The solid angle is  "<<SolidAngle<<"\n";
      //total all the acceptances and solid angles
      TotalAcceptance+=acceptance;
      TotalSAngle+=SolidAngle;
      AllAcceptance[n]=acceptance;
      AllSAngle[n]=SolidAngle;
      ofstream ACCEPTANCE("Acceptance.txt",ios::app);
      ACCEPTANCE<<acceptance<<endl;
      ofstream SANGLE("SolidAngle.txt",ios::app);
      SANGLE<<SolidAngle<<endl;
    }
      // calculate the mean acceptance and solid angle
      MeanAcceptance=TotalAcceptance/errors;
      MeanSAngle=TotalSAngle/errors;
      //calculate the standard deviations on the acceptance and solid angle
      for (int i=0;i<errors;i++)
    {
      TDevAcceptance+=(AllAcceptance[i]-MeanAcceptance)*(AllAcceptance[i]-MeanAcceptance);
      TDevSAngle+=(AllSAngle[i]-MeanSAngle)*(AllSAngle[i]-MeanSAngle);
    }
      STDevAcceptance=sqrt(TDevAcceptance/(errors-1));
      STDevSAngle=sqrt(TDevSAngle/(errors-1));
      // read out the mean acceptance and solid angle with errors
      cout<<"The acceptance is: "<<(MeanAcceptance)<<""<<(STDevAcceptance)<<"\n";
      cout<<"The solid angle is: "<<(MeanSAngle)<<""<<(STDevSAngle)<<"\n";
      ofstream Results("Results.txt",ios::app);
      Results<<"The acceptance is: "<<(MeanAcceptance)<<""<<(STDevAcceptance)<<"\n";
      Results<<"The solid angle is:    "<<(MeanSAngle)<<""<<(STDevSAngle)<<endl;
    }
}


Optimization Data for Beta
0.05 - 0.06	0.06 - 0.07	0.07 - 0.08	0.08 - 0.09	0.09 - 0.10	0.10 - 0.11	0.11 - 0.12	0.12 - 0.13	5.9799000000000024	2.4171	3.1255999999999999	3.7789000000000001	4.3216000000000001	2.6985100000000002	2.1883900000000245	1.14829	Threshold Voltage (V)
Δ Singles Rate hz
Optimization Data for Alpha
0.05 - 0.06	0.06 - 0.07	0.07 - 0.08	0.08 - 0.09	0.09 - 0.10	0.10 - 0.11	0.11 - 0.12	0.12 - 0.13	17.2714	9.3467000000000002	4.3718000000000004	3.4975000000000001	2.5478000000000001	1.8089999999999904	2.3461999999999987	2.2567999999999997	Threshold Voltage (V)
Δ  Singles Rate hz
Optimization Data for Gamma
0.05 - 0.06	0.06 - 0.07	0.07 - 0.08	0.08 - 0.09	0.09 - 0.10	0.10 - 0.11	0.11 - 0.12	0.12 - 0.13	16.075399999999817	9.0804000000000027	5.6833999999999998	3.7839000000000245	1.8141	1.7587999999999893	2.4447000000000001	2.4045000000000001	Threshold Voltage (V)
Δ Singles Rates hz
Optimization Data for Delta
0.05 - 0.06	0.06- 0.07	0.07 - 0.08	0.08 - 0.09	0.09 - 0.10	0.10 - 0.11	0.11 - 0.12	0.12 - 0.13	22.1859	12.859300000000006	7.2262000000000004	4.2511999999999999	2.6583000000000001	2.7587999999999999	1.1666000000000001	1.8032999999999892	Threshold Voltage (V)
Δ Singles Rates hz
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