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The NOVA Experiment

e NOVA is a second generation
experiment on the NuMI| beamline
which is optimized for the detection
of vy—Ve and v, — Ve Oscillations

e NOVA is:

e An upgrade of the NuMI beam
intensity from 400 kW to 700 kW

e A 15 kt “totally active” tracking
liquid scintillator calorimeter sited
14 mrad off the NuMI beam axis
at a distance of 810 km

e A 220 ton near detector identical
to the far detector sited 14 mrad
off the NuMI beam axis at a
distance of 1 km
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Neutrinos and neutrino oscillations

e Neutrinos feel neither the electric
force nor the strong nuclear force

e They are described by their electro-

weak charge (e,U,T) and their mass
(m1,m2,m3) but these properties are 1
not simultaneously observable ‘ . >= ( )

e Neutrinos are produced and

detected in electro-weak I
| L Py, = sin® 20 cos™ Oy sin (

eigenstates, but propagate as mass

eigenstates. Interference among the

m1, M2, and m3z mass eigenstates :

results in an oscillation of the 0.5

electro-weak composition of the

neutrino beam as it propagates

from source to detector :
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Where to go from here”
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Vu_’VT Ve_’Vu-l‘VT
SK, K2K, and MINOS Solar neutrinos + KamLAND

Vu— Ve
Not olbserved. If this occurs opens possibility
of CP violation in neutrino sector

e \\What is 0137

e \Vhat is the pattern of masses” Is ms the heaviest or lightest state?
® |s the neutrino a Dirac or Majorana particle”?

® |s CP violated?

® |s B3 really maximal? p-T symmetry?

® Does the PMNS framework hold together or is there more going on?
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Principle of the NOVA
=Xperiment

Using a muon neutrino beam, we have
two basic observables

1.P(vy—Ve) for neutrinos

2.P(vu—Ve) for anti-neutrinos
We can plot these two observables as
a function of the remaining unknowns
013, Ocp, and mass hierarchy.
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Using a muon neutrino beam, we have
two basic observables

1.P(vy—Ve) for neutrinos

2.P(vu—Ve) for anti-neutrinos
We can plot these two observables as
a function of the remaining unknowns
013, Ocp, and mass hierarchy.

013 =15°

Am?13>0 (“Normal hierarchy”)
Am?13<0 (“Inverted hierarchy”)
Ocp =0, V11/2, o 11, A3T/2, 2T

Perfect measurements of the two
oscillation probabilities answer all
remaining questions if B+3 is large
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Using a muon neutrino beam, we have
two basic observables

1.P(vu—Ve) for neutrinos

2.P(vu—Ve) for anti-neutrinos
We can plot these two observables as
a function of the remaining unknowns
013, Ocp, and mass hierarchy.
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Am?13<0 (“Inverted hierarchy”)
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Perfect measurements of the two
oscillation probabilities answer all
remaining questions if B+3 is large
enough.

For small ©+3 there are inherent
ambiguities between hierarchy choice
and dcp. However, even in these
cases we learn something about dcp
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Using a muon neutrino beam, we have
two basic observables

1.P(vu—Ve) for neutrinos

2.P(vu—Ve) for anti-neutrinos
We can plot these two observables as
a function of the remaining unknowns
013, Ocp, and mass hierarchy.
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For small ©+3 there are inherent
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and dcp. However, even in these
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Using a muon neutrino beam, we have
two basic observables

1.P(vu—Ve) for neutrinos

2.P(vu—Ve) for anti-neutrinos
We can plot these two observables as
a function of the remaining unknowns
013, Ocp, and mass hierarchy.
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Perfect measurements of the two
oscillation probabilities answer all
remaining questions if B+3 is large
enough.

For small ©+3 there are inherent
ambiguities between hierarchy choice
and dcp. However, even in these
cases we learn something about dcp
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Event quality

Topologies of basic
Interaction channels shown
at right. Each “pixel” is a
single 4 cm x 6 cm cell of
liquid scintillator

Top: vy charged-current’

Center: Ve charged-current |

Bottom: neutral-current
Need >100:1 rejection
against background

Detector challenge: Achieve
large target mass (10’s+
kilotons) while maintaining
high granularity to avoid

confusing the detection
channels

NOVA achieves 35%
efficiency for ve CC while
limiting NC—ve CC fake rate
to 0.1%
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Event quality

Topologies of basic
Interaction channels shown

at right. Each “pixel” is a
single 4 cm x 6 cm cell of
liquid scintillator

Top: vy charged-current’
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Center: Ve charged-current |

Bottom: neutral-current
Need >100:1 rejection
against background

Detector challenge: Achieve
large target mass (10’s+
kilotons) while maintaining

high granularity to avoid

confusing the detection b X
channels W = ond -
o 55 = = -
N (‘,’ : =
NOVA achieves 35% /ZO/’X - .
efficiency for ve CC while . , i
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limiting NC—ve CC fake rate
to 0.1%
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Sensitivity to vy— Ve Oscillations
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Resolution of the mass hierarchy
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Resolution of the
mass hierarchy

¢ The mass hierarchy provides a
window on very high energy
scales. Most GUTs naturally
produce normal mass
hierarchy. Other approaches
produce inverted hierarchy.

e Establishing inverted hierarchy
makes next generation of OVRf
searches even more interesting.
Either they will see OvpBp or its
absence indicates neutrinos are
Dirac particles
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o
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Since NOVA's spectrum peaks at the oscillation maximum and the detector has excellent
QE resolution, any v, CC events in the dip energy region indicate a non-maximal 02s.
NOVA will make this measurement for both neutrinos and anti-neutrinos.



With accelerated funding from ARRA,
we will build the complete near detector
this year. It will operate on the surface

until we're ready to move it underground
at NuMl

The NOVA Detectors
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Liguid Scintillator Composition

component purpose mass fraction volume mass
[gal] [kd]
mineral oil solvent 95.79% 2,810,674 9,074,478
pseudocumene scintillant 4.11% 117,528 389,720
PPO primary waveshifter 0.091% 8,576
bis-MSB secondary waveshifter 0.0013% 120
Stadis-425 antistatic agent 0.0003% 28.4
tocopherol (Vit E)  antioxidant 0.0010% 95
Total 100.00 2,928,200 9,473,017

e Scintillator mixture optimized to deliver required light at low cost. For
our application technical grade mineral olil is sufficient.

e Relatively low pseudocumene fraction reduces interactions with WLS/

PV(C/adhesives to below what we can measure



2,5-Diphenyloxazole (PPO)
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ITlntometer vs Attenuation - Vendor Oils]
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Scintillator Quality Control
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- Renkert 70T,
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e Mineral oil: Require > 3.5 m attenuation
length at 420 nm. Measure transmission
across 6” cell relative to a glass standard T I P Tt ) B s A
using a Tintometer [Figure top, right] 085 g e & o M R e

e Pseudocumene fraction determined by T
separating it from olil using gas %Qw‘“(bﬁg&“
chromatography and electron impact
mass spectrometry

e Fractions of wave shifters determined by
UV absorbance at 304 (PPO) and 350 nm
(PPO) [Figures bottom, right]

e Analysis takes 1-2 days measures
pseudocumene concentration to 5% RSD
and waveshifter concentrations to 2%
RSD.
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Scintillator production

Toll Blender ion
3M gal blended scintillator
‘ Scintillator
NOVA Transportation Model Waveshifters Pseudocumene Stadis 425
Ash River

(@Fermilab
CD3a acquistion

Blended Scintillator
6 tanker trallers'wecek

3-day round trip \

Fermilab

QC waveshifters

« All stainless steel or
epoxy-lined tanks

fluor blend tank

hicagoland Toll E | — () example: 50,000 gal « Dedicated lines
receive/QC liquid components, <> 1.2M gal scintillator hoses. & .
blend/QC scintillator «U oses, & pumps
@ QC or pump pump or QC
blend tank blend tank

Waveshifters

CD3a .
(W |‘( e
Pseudocumene
~1 rail car/6é months, Mineral Oil
shipped from Gulf |

4 rail cars per month,

shipped from Guilf scintillator blend tanks
uamplc 200,000 gal

- 1 mo @ 6 tankers/wk

Ap————

To Ash River
6 tankers/wk



WLS Fiber

e NOVA will use 13,000 km WLS fiber from
Kurrary. No other producer produces
fibers with long enough attenuation
length

e Delivered at 360 km/mo over three years

e 0.7 mm “S” type (most flexible), 300 ppm
of fluorescent dye

e Double clad with PMMA and flourinated
plastic

¢ Tested >200 m of fiber in scintillator with
high PC fraction at elevated temperatures
wrapped in tight coils. We've seen no
degradation in performance.

e A copy of our QC device will be send to
Kurrary so they can test the fiber as it
comes off production line

Attenuation Length (m)
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QE and Intensity

Matching photodetector to scintillator performance
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The PVC that the extrusions are made
from must satisfy multiple
requirements

1. High reflectivity. Light bounces ~10 times
off the walls before being captured in the
WLS fiber so we need high reflectivity to
achieve required light levels

2. Mechanical. The PVC must be strong
enough to contain the liquid scintillator at
pressures of >19 psi and support the
horizontal modules. It must maintain its
strength throughout the lifetime of the
experiment. We must be able to glue to the
surface.

3. Extrudability: The resin must reliably pass
through the extruder and produce parts
with good shape and structure

Development of PVC Resin

phr - per hundred parts of resin| NOVA-24 NOVA-27

Shintech SE950EG

(high reflectivity) 100 100

Rohm & Haas Advastab TM-181

20% monomethyl tin 2.5 2.5

DuPont R-102

rutile titanium dioxide 19 0

Kronos 1000

anatase titanium dioxide 0 19

Ferro 15F

calcium stearate 0.8 0.8

Honeywell Rheochem 165-010

paraffin wax 1.1 1.1

Ferro Petrac 215

oxidized polyethylene 0.2 0.2

Rohm & Haas F1005

glycerol monostearate 0.3 0.3

Arkema Durastrength 200

Acrylic impact modifier 4.0 4.0

Rohm & Haas Paraloid K120N

processing aid 1.0 1.0
wt % titanium dioxide 15 15

Our two best formulations: Only
difference is crystal structure of TiOx.
Numbers indicate iteration number on

formula.
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Top left: extrusions coming off the line
Bottom left: testing compressive strength
Above: Horizontal pieces for IPND

P\/C Extrusions



PVEG

Reflectivity Measurements

Measurements made at factory with handheld unit (Hunter Lab Miniscan XE)
Ana Pla-Dalmau (Fermilab)
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http://web.ukonline.co.uk/aplr/structure.htm
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Compare 90%
reflectivity to 92%
after 10 bounces:

0.90"0 =0.35
0.9219=0.43

2% change in
reflectivity = 25%
change in light yield

In a NOVA test cell
anatase vyields
~14% more
detected photons
than rutile
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Adhesives

The detector is assembled with adhesives. They are used to:
e Join two 16-cell wide extrusions together to make a 32-cell wide module
e Connect the top and bottom end caps on a module
e Join adjacent 15 m x 15 m planes together to form blocks

Requirements for the adhesives vary according to above function, but in
general we need

e High strength (shear and peel)

e ~20+ minute setup times

e \Where adhesive is in contact with scintillator, low reactivity with scintillator
e Safe working conditions
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Plastic Welder

® Plastic welder is very strong in
over-pressure tests, but shows
signs of interaction with scintillator
INn high exposure tests.

® 3\I2216 is somewhat weaker than Plastic
Welder, but shows no interaction with scintillator in
high exposure tests.

® [wo-glue solution prevents contact of Plastic Welder with
scintillator

3M2216 3

Glue seals Two-glue solution for bottom
module plate




Adhesive dispenser
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Schedule

e Construction has started on far

detector building. Should have clne S, 2999 e
occupancy next summer allowing S
installation for construction of far —
detector to begin. Building - -
complete in November 2010. \ -

e \We will construct the near
detector over the next year and
begin running it on the surface at
Fermilab next summer

e Recommended for CD3b in July.
Last approval before we’re
completely authorized for all
procurements

¢ Plan to run experiment while its
being constructed. First data in
2012 and a completed detector
in 2013.

July 23, 2009




