

Software Standards and Tools for the NOvA Data Acquisition
System Development Effort

Kurt Biery, Glenn Cooper, Steve Foulkes, Gerald M. Guglielmo, Luciano Piccoli,
Seangchan Ryu, Margaret Votava

Fermi National Accelerator Laboratory

NOVA-doc-615

 1 07/24/07

Abstract
This document covers the software standards and tools required for the development of
the Data Acquisition Software for the NOvA experiment. The main sections include:
Coding Standards; Software Development Cycle; Code and Release Review Procedures;
Software Languages and Environment; and Software Tools. The material represents a
series of guidelines aid the developers in producing, testing, deploying and certifying a
robust, high performance Data Acquisition System for the NOvA experiment.

 2 07/24/07

Table of Contents
1...Coding Standards 5

1.1...General Source Code Comments 5
1.2...Source Code Document Tags 5

2...Conventions and Formatting Styles 6
2.1... Naming Conventions 6
2.2...Formatting Style 9
2.3..Method and Data Member Ordering 10
2.4... Usage Rules 11

3.. Software Development Cycle 12
3.1...Code Design 12
3.2...Code Development 12
3.3...Code Release Testing 13
3.4...Code, Document and Test Review 13
3.5..Code Release 13

4...Code and Release Review Procedures 13
4.1... Conditions for Triggering an Informal Review 14
4.2...Conditions for Triggering a Fagan Inspection 14
4.3.. Informal Review 14

4.3.1 ...Informal Review Structure 14
4.3.2 ..Informal Review Procedures 16

4.4.. Fagan Inspection 16
4.4.1 .. Fagan Inspection Structure 16
4.4.2 ... Fagan Inspection Procedures 17

5.. Software Languages and Environment 19
5.1...Software Languages 19

5.1.1 ..Software Languages for Data Flow Applications 19
5.1.2 ..Software Languages for Display and Control 20
5.1.3 .. Software Languages for Small Tasks 20
5.1.4 ...Software Languages for Scripts 20

5.2... Software Environment 20
5.2.1 ... Operating Systems 21
5.2.2 ... User Interfaces to the Operating System 21

6.. Documentation Standards 21
7.. Naming conventions 21

7.1... Directory structure 22
7.1.1 ...C/C++ 23
7.1.2 .. Python 23
7.1.3 .. Java 23

7.2..File Naming Convention 24
8...Software Tools 24

8.1...Compilers 24
8.1.1 .. C/C++ Compiler 24

 3 07/24/07

8.1.2 .. Java Compiler 25
8.1.3 ...Python Compilers 25

8.2.. GUI Tools 25
8.3..Authentication/security 25
8.4.. Debuggers 26

8.4.1 .. C/C++ Debuggers 26
8.4.2 .. Java Debuggers 26
8.4.3 ..Python Debuggers 26

8.5.. Build Systems 26
8.5.1 .. Build System for C/C++ 26
8.5.2 .. Build System for Java 27
8.5.3 ..Standard make targets 27

8.6... Integrated Development Environments 28
8.7..Automated Documentation Generators 28

8.7.1 ... Automated Documentation Generator for Java 28
8.7.2 ... Automated Documentation Generator for C/C++ 29
8.7.3 ... Automated Documentation Generator for Python 29
8.7.4Languages without Automated Documentation Generation 30

8.8..Profilers 30
8.8.1 ..C/C++ Profilers 31
8.8.2 ..Java Profilers 31
8.8.3 ... Python Profilers 31

8.9... Source Code Checkers 31
8.9.1 ... C/C++ Code Checkers 31
8.9.2 ... Java Code Checkers 32
8.9.3 ...Python Code Checkers 32

8.10................................. Code and Build Requirements for Aiding Debugging Process 32
8.10.1 ...Trace Levels 32

8.11...Code Distribution 32
8.11.1 .. Issues with RPM for Multiple Version Support 33
8.11.2 ...UPS/UPD System for Code Distribution 33

8.12...Code Management Systems 34

 4 07/24/07

1 Coding Standards
The Data Acquisition System software development effort will be a collaborative
project. In order to provide quality control and make the code easily transferable
among members of the team, the code needs to be developed in a consistent manner.
Assuring consistency is made easier when automated tools can be applied to verify
standards have been kept.

1.1 General Source Code Comments
Developers should include comments within sections of code to indicate general
functionality and purpose at a minimum. They should keep in mind not only
comments which will help them read and understand the code, but also what would
be helpful to a new person trying to learn the code at a later date.

1.2 Source Code Document Tags
Where possible the use of Javadoc compatible document tags are to be used.
Minimally this means in all Java, python, and C/C++ code. For python code and
bash shell scripts this is also encouraged. While for those two languages there is not
currently an application to parse the code and build documentation, it is possible
some minimal level of this will be available and could be used.
The following table lists Javadoc tags that are required for C/C++ and Java code.

Tag Languages Condition

@author Java, C/C++, python Always (classes)

@version Java, C/C++, python Always (classes)

@param Java, C/C++, python As needed (methods)

@return Java, C/C++, python Always (methods)

@throws Java, C/C++, python As needed (methods)

All classes, functions and methods need to use tags. The version information goes
within the block of code for the class. Methods should document all parameters,
return values, and exceptions raised.
In general for C/C++ code, the main documentation for methods should go in the
c/cpp files and not the include files. The documentation in the include files should
cover the class documentation through the member fields using the documentation
tags. However, for the methods a brief comment using the // comment format can
be placed in the include file, but the tagged information should go in the c/cpp file.

 5 07/24/07

Note that using the /** */ format in the include file before the method declaration
will cause the documentation parser to ignore the tags in the c/cpp file, so care must
be taken to avoid that issue.

2 Conventions and Formatting Styles
There rules on naming conventions and formatting styles are specified in this section.
Naming conventions cover rules for allowed characters and capitalization methods,
classes, labels, etc. Formatting styles cover spacing of operands and labels and rules
covering the general layout of the blocks of code in files.

2.1 Naming Conventions
The general rules on naming conventions have been pulled together from
experience and also from reviewing various sources on standards from other
projects. One place that served contributed to the rules selected was http://www-
cdf.fnal.gov/computing/coding_guidelines/CodingGuidelines.html. Rules based on
that reference are:
1. Classes may not have any public data members.
2. Class instance fields (instance fields) must have names beginning with an

underscore character, followed by a lower case letter. The rest of the name
should be a mix of upper and lower case letters. Upper case letters should be
used to separate words in the name.

3. Static class fields (class fields) should be upper case letters with an underscore
used to separate words in the name.

4. Local variables should start with a lower case letter, and be a mix of upper and
lower case letters and digits. Upper case letters should be used to separate words
in the name.

5. Class names should start with an upper case letter and be a mix of upper and
lower case letters. Upper case letters should be used to separate words in the
name.

6. Public method names should start with a lower case letter and be a mix of upper
and lower case letters. Upper case letters should be used to separate words in the
name.

7. Static method names should be named in the same manner as public method
names (see above).

8. Namespaces should be all lower case letters with an underscore character used
to separate words in the name.

The naming conventions for Java code are outlined in the following table. Note this
is not the compete list of settings in the checkers, mainly just the naming

 6 07/24/07

http://www-cdf.fnal.gov/computing/coding_guidelines/CodingGuidelines.html
http://www-cdf.fnal.gov/computing/coding_guidelines/CodingGuidelines.html

conventions. Additional rules will apply beyond naming conventions. For both the
C/C++ and the Java checkers, the rules files to use will be provided. Note that
regular expression patterns '\d' and '\w' mean 'digits (0-9)' and 'word characters
(letters and digits)' respectively.

Type Rule

Package Name Regex [a-z][\w]*(\.[a-z][\w]*)*

Class Name Regex [A-Z][\w\d]*

Abstract Class Name Regex [A-Z][\w\d]*

Interface Name Regex [A-Z][\w\d]*

Label Name Regex [A-Z][A-Z0-9_]*

Private Instance Field [_][a-z][\w\d]*

Package Instance Field [_][a-z][\w\d]*

Protected Instance Field [_][a-z][\w\d]*

Public Instance Field [_][a-z][\w\d]*

Private Class Field [A-Z][A-Z0-9_]*

Package Class Field [A-Z][A-Z0-9_]*

Protected Class Field [A-Z][A-Z0-9_]*

Public Class Field [A-Z][A-Z0-9_]*

Private Final Class Field [A-Z][A-Z0-9_]*

Package Final Class Field [A-Z][A-Z0-9_]*

Protected Final Class Field [A-Z][A-Z0-9_]*

Public Final Class Field [A-Z][A-Z0-9_]*

Local Variable [a-z][\w\d]*

Method Returning Boolean [a-z][\w\d]*

Private Instance Method [_][a-z][\w\d]*

 7 07/24/07

Type Rule

Package Instance Method [_][a-z][\w\d]*

Protected Instance Method [_][a-z][\w\d]*

Public Instance Method [a-z][\w\d]*

Private Class Method [a-z][\w\d]*

Package Class Method [a-z][\w\d]*

Protected Class Method [a-z][\w\d]*

Public Class Method [a-z][\w\d]*

Private Final Method [a-z][\w\d]*

Package Final Method [a-z][\w\d]*

Protected Final Method [a-z][\w\d]*

Public Final Method [a-z][\w\d]*

Private Final Class Method [a-z][\w\d]*

Package Final Class Method [a-z][\w\d]*

Protected Final Class Method [a-z][\w\d]*

Public Final Class Method [a-z][\w\d]*

Parameter [a-z][\w\d]*

Final Parameter [a-z][\w\d]*

For C++, enumeration names and typedefs follow the same rule as the class name
specified above. Enumeration fields and macros follow the label name regular
expression rule defined above.
Similarly the naming conventions for Python scripts are outlined in the next table.

Type Rule

 8 07/24/07

Type Rule

Module Name [a-z_][a-z0-9_]*)|([A-Z][a-zA-Z0-9]+

Class Name [A-Z][a-zA-Z0-9]+

Function Name [A-Z][a-zA-Z0-9,_]*$)|([a-z][a-zA-Z0-
9,_]*$)|([_][A-Z][a-zA-Z0-9]*

Method Name [A-Z][a-zA-Z0-9,_]*$)|([a-z][a-zA-Z0-
9,_]*$)|([_][A-Z][a-zA-Z0-
9,_]*$)|([_]{2}[a-z]+[_]{2}

Argument Name [a-z][a-zA-Z0-9]*

Variable Name [a-z][a-zA-Z0-9]*

A similar naming convention should be adopted for C/C++ and bash shell scripting.

2.2 Formatting Style
General formatting conventions for Java code are outlined in the following table. Note
this is not the compete list of settings in the checkers. Again for both the C/C++ and the
Java checkers, the rules files to use will be provided.

Type Rule

Space After Statement Keyword TRUE

Line Length 120 (guideline of 80)

Space Around Binary Expression TRUE

From the JCSC rule editor application, the following explanations for a few rules
are provided for clarification:

● “Space After Statement Keyword”
This rule specifies whether you have a space ' ' after a statement keyword.
Statements are if, while, for, ...
if (a < MAX) {
 for (int i = 0; i < MIN; i++) {
 ...

 9 07/24/07

 }
}
● “Space Around Binary Expressions”
Binary expressions have operands on both sides of the operator.
int i = MAX * 2;
long l = i + (MIN – MAX / 2);
for (int i = 0; i < 10; i++) {
...
}

Another formatting rule is the use of four (4) spaces instead of tabs for indentation
where feasible. This rule should apply to all C/C++, Java, and Python code and
Bash shell scripts. One exception to the rule is makefiles which require some lines
to begin with a tab.
There is also a rule specifying that an open bracket should appear on the header line
for the block, with the close bracket line on a separate line. An example of this rule
is shown here:

public JPanel getPanel() {
 return thePanel;
}

2.3 Method and Data Member Ordering

The following tables show guidelines for the ordering of data members and
methods in Java and C++ classes.

Java

1. Public static data members
2. Protected data members
3. Private data members
4. Public methods
5. Protected methods
6. Private methods

 10 07/24/07

C++
1. Public constant data members
2. Public methods
3. Protected data members
4. Protected methods
5. Private data members
6. Private methods

2.4 Usage Rules
There are many usage rules spelled out in the literature on coding excellence. In the
case of C++ see for example Effective C++” and “More Effective C++ by Scott
Myers (Addison-Wesley), or C++ Coding Standards, 101 Rules, Guidelines, and
Best Practices by Herb Sutter and Andrei Alexandrescu. These rules will not be
restated here as reference books are devoted to properly describing them and which
ones are relevant may not be completely known ahead of the development cycle.
However some of these guidelines may be adopted in the future and applied to the
code, especially if it improves the quality of the code. Usage rules can evolve over
time, here we only document an initial baseline as the foundation for the future.
Here are some usage rules as a starting point:
1. Referencing static final fields. This covers a Java rule on static final fields. If we

have a class called AClass with a static final string named EXIT, when referring
to this string in a method of BClass, one should use the class name and not an
instance name. In other words one should refer to Aclass.EXIT and not
myLabel.EXIT where myLabel is an instance of AClass.

2. Static class methods over functions. This rule refers to C++ use of functions.
Use of global functions should be avoided. Instead, static class methods should
be used in place of functions. It is recognized this only applies to code being
developed as we have no control over libraries and APIs provided by third
parties. It is noted that finding static class methods in a large body of code is
easier than global functions as the class name quickly narrows the search. It also
allows for better grouping of related functionality, as multiple container classes
can be defined for specific kinds of methods, than separate functions possibly
scattered throughout the code base.

3. For C++ no classes should be defined in the global name space. For Java no
classes should be declared outside of a package.

4. Header files may not contain any using directives or declarations.
5. Do not put any conditional compilation clauses which define new member

 11 07/24/07

datum or change size of any object based on value of a locally defined variable
in a header file.

6. Do not use C-style casts. Instead use the appropriate C++ dynamic_cast,
reinterpret_cast, or const_cast.

3 Software Development Cycle

There is a larger outer development cycle driven by preparing and executing major
releases of the software. That cycle is broken down into four main phases: design and
development for the release; testing for the release; review of development and
testing; release of code. Within each main phase there are smaller cycles which form
can be iterated until the phase is complete if necessary. The structure of the cycle
allows assessment of status toward the release and the ability to insure consistency
across many sub-projects for the Data Acquisition System.

3.1 Code Design
During the design phase, developers are creating a blueprint for building the
software to meet the requirements defined by the requirements document. This
phase is a very important step in the process of delivering performant, reliable code
in a timely manner. Careful attention during the design phase minimizes the risk of
having to re-write large portions of the code. This phase will produce a design
diagram in UML (or similar notation) along with a text document describing the
diagram. Once the design has been completed, there will be an informal review.
Feedback from the review will be used to update the design diagram and
documentation as appropriate and the design will then be available to start the
coding cycle.

3.2 Code Development
During the code development phase, developers are performing a series of activities
leading to the conclusion of this phase with software that: provides functionality
requested; adheres to standards; has appropriate tests built; and is well documented.
There may be multiple iterations of writing the code and test code for a new
feature, running these new tests, and documenting the new feature. The number of
iterations is coupled to how many feature are needed for the release. The developer
may request an informal review or Fagan inspection if they have strong concerns
about some section of the code or a design choice. Once the developer is satisfied
with the code, the tests and documentation have been properly updated, and the
software is packaged in the same format as will be used in the production system,
then this software is ready for the next phase.

 12 07/24/07

3.3 Code Release Testing
This phase does not begin until the design and development phase is complete. In
this phase formal testing is done and all tests are run for the software package being
developed. This differs from the testing in the development phase where the
developer may chose to only run the tests specifically for the new functionality.
Another difference is this phase requires documentation of the test results in a
manner that can be presented for review. In the development phase, the running of
tests are primarily to aid the developer in the process of creating the code and do
not need to be documented for others to see.
All major releases of software are required to be tested on the integration test
facility before being released into production. All minor releases are strongly
encouraged to pass through the integration facility as well.
If a problem is uncovered in this phase, then the code needs to fixed and this phase
starts from the beginning once the fix is complete. The phase ends when the testing
has been successful and documentation including the output, with timestamps, from
all tests has been produced and is ready for review.

3.4 Code, Document and Test Review
During this phase a set of reviewers, differing for formal and informal reviews, are
provided the software documentation, test results and source code for the package
under review. The structure of the reviews may differ between formal and informal,
but the goal remains the same in both cases. This goal is to insure as much as
possible that the software is ready for release on the basis of performance,
reliability and documentation. The reviewers can request clarification on any issues
they find and can request changes to the code or documentation. Any changes
requested to the software would push the process back to the code release testing
phase, whereas requests to change documentation would require only a review of
the updated documentation. At the end of this phase the software is ready to be
released.

3.5 Code Release
During this phase the software as packaged prior to the testing phase is placed in an
official distribution repository and announced as released. This is the shortest phase
of the main cycle.

4 Code and Release Review Procedures

The goals of the code review process are to insure robust, reliable and well
documented software and to expose developers to the ideas and techniques of other
developers. Both of these goals serve to improve the overall quality of the software

 13 07/24/07

produced. For the first goal it is fairly easy to see how the software quality is improved
by the process. Achieving the second goal raises quality by improving the breadth and
experience of the people developing the code.

There are two types of reviews defined for this project, an informal review and a
Fagan inspection. The former review is more of an internal check that everything that
needs to be done has been completed properly. The latter review is more structured
and focused in nature. At least one member of the review board is expected to be not
on the development team.

4.1 Conditions for Triggering an Informal Review
An informal review can be requested by a developer if they have concerns about a
specific section of code or issues with meeting a specific requirement. There should
be an informal review before any code release as part of the normal development
cycle.

4.2 Conditions for Triggering a Fagan Inspection

A Fagan Inspection can also be requested if problematic issues exist that informal
reviews have failed to resolve. They can also be triggered as the project nears the
point of a major release of the production code to look at key sections of the code.

4.3 Informal Review

This review also serves as a means of spreading the knowledge to people other than
the primary developer of that section of code. This can be a less in-depth look at the
software than a formal review, but if requested an in-depth look at specific parts
will be done. In general these reviews will be populated by members of the Data
Acquisition System software development team. Typically the code and release
reviews will be of this type.

4.3.1 Informal Review Structure
For an informal review, generally members of the development team will be
asked to look over sections of the code or documentation they did not write and
prepare comments or questions on it. They may be given a set of issues to
consider ahead of time, but that is not required. Where possible at least two
people should look over the same material, but there does not need to be
complete overlap. Also this does not need to be an in-depth study of the code,
but can be confined to a more casual review. The main point of the informal

 14 07/24/07

review is to insure nothing obvious has been overlooked.
There review period should have a defined length of time, two weeks is good as
it allows time for people to work around schedule conflicts, and people should
be told when the follow up meeting will take place. At the follow up meeting
people should raise their concerns and these should be discussed. Difficult or
contentious issues can be deferred to a later time to keep the meeting from
lasting more than 2 hours. This type of review should be used to determine if
code is ready for release as part of the normal development cycle and should be
viewed independently of a formal review. In other words, a formal review does
not eliminate the need for an informal review for declaring the code ready for
release.

 15 07/24/07

4.3.2 Informal Review Procedures

The informal review should begin with the calling of a meeting of the
development team once the development and testing has been finished, or when
there is a specific issue a developer wants to discuss. At the initial meeting the
team will discuss the focus of their efforts and whether it will be required for
members to go off and study things on their own. If there is nothing contentious
and everything seems in order, the process can be completed with a sign off
during this initial meeting.

If independent study is needed, then the team will go off an review their
assignments in preparation for the follow up meeting. At the follow up meeting
the team will discuss what they learned and try to reach decisions on the issues.
If not all issues can be resolved the cycle may have to be iterated. Also, if a
problem is identified that needs addressing the cycle may be reverted back to the
code release testing phase. If all issues are resolved this process can be
completed with a sign off during the meeting.

4.4 Fagan Inspection

The Fagan inspection is a structured review with participation from outside of the
development team. Whereas it would be beneficial to inspect all of the code at each
release, that is likely not a practical scenario. Instead inspections will typically be
done close to the final or near final release of the software. Because of the size of
the code involved, these inspections will need to be confined to smaller key
sections of the code or on issues which pose high risk for the system.

At least one member of the inspection board should be from outside of the project.
This also limits the number of inspections that can be accomplished. Guidance on
performing Fagan inspections can be found at the following locations:

http://ods.fnal.gov/ods/www/process/ftr.html

and

http://ods.fnal.gov/ods/www/process/description.html

4.4.1 Fagan Inspection Structure
The Fagan inspection board will consist of typically 2 or 3 members, at least one

 16 07/24/07

http://ods.fnal.gov/ods/www/process/ftr.html
http://ods.fnal.gov/ods/www/process/description.html

of which is from outside the development team, the presenter, the inspection
leader and the scribe. That is a total of 5 or 6 people for the inspection.
Experience has shown that it is vital for everyone involved to be cooperative,
and not to combine roles of the participants.
The presenter is the primary developer. They are charged with preparing
packages of source code and making a presentation to the inspection team. They
also are charged with answering questions of the reviewers openly and be
cooperative. The presenter will also be expected to make a written response to
each action items (e.g. suggested change in code), on what action they plan to
take if any. This response should cover each item explicitly. Note the inspection
team members only make suggestions, they cannot make mandates.
The leader runs the inspection and organizes the meeting. They are there to
control the meeting and insure the meetings do not stall out or last too long.
They must be assertive during meetings and make sure the process stays on
schedule. They are also charged with reminding everyone involved at the start of
each meeting that the aim of the inspection is to improve the software and no
one should take any comments personally. The software is what is being
reviewed and not the developer. The leader should never be a line manager of
the presenter, and results of the inspection should not be given to the presenter's
line management (assuming we have enough people to exclude a line manager
from the inspection and a line manager is not one of the developers).
The scribe is charged with taking notes during the meeting, preparing and
sending those notes to the leader after the meeting for appropriate dissemination.
Any comments by members of the inspection team on things to fix are to be
noted by the scribe, not the leader and not the presenter.
The structure of the inspection consists of several parts: the presenter preparing
for the initial meeting; the initial meeting where the presentation is made and
inspectors receive materials and ask background related questions; the
inspectors on their own examine the code; a final meeting where the inspectors
present their findings and discuss them with the presenter; presenter writes a
formal response to questions and suggestions and gives that to the leader of the
inspection team.

4.4.2 Fagan Inspection Procedures
The first step is when a decision is reached indicating a Fagan inspection is
desired. The initial interest for an inspection can come from the developers
involved or the leader of the project team. The decision for an inspection can be
made by the project leader or from higher up the management chain. The project
manager can accept or reject a request for an inspection from the primary
developer, but it is hard to imagine a set of circumstances when the project
leader would want to reject this request for help from the developer. Before one

 17 07/24/07

can be sure an inspection is necessary, they should have a clear idea of what the
review should focus on: specific sections of code; specific issues or concerns.
Inspections should be confined to 1000 lines or less of actual code.
Once the project has approved the request for a Fagan inspection, the project
leader needs to recruit the members of the inspection board. First step is to
inform the presenter that an inspection is being organized and they need to
prepare source code and a presentation. Discuss with the presenter what the
focus of the inspection will be.
The next step is identifying the inspection board leader who will be charged
with assembling the inspection team. The inspection leader needs to know what
the focus of the inspection will be on so they can know what technical expertise
would be most beneficial. Members from the development team who could be
members of the inspection board should be given to the inspection leader once
identified, and the name of the presenter should also be identified to the
inspection leader.
The inspection leader will then try to assemble the Fagan inspection board. The
inspection leader may need to talk with the line management of people to find an
outside member for the inspection. At this point one of the inspection board
members will be chosen as the scribe, they do not inspect the code but instead
take notes at the meeting on what has been said and write up a report that is
given to the review leader. Once a inspection board has been assembled the
inspection leader arranges for the initial and final meetings (a couple of weeks
apart).
During the initial meeting the inspection leader runs the meeting. They are
responsible for giving the charge to the inspection board members. The
presenter will make a presentation and answer questions the inspectors have,
while the scribe takes notes. The leader makes sure the meeting stays on track
and does not extend beyond 2 hours. The presenter should indicate places in the
code and issues they would like the reviews to give special attention. The leader
adjourns the meeting at the end and reminds the inspectors they need to
complete their study by the next meeting.
The inspectors now go off on their own and study the code, focusing on the
issues and sections identified during the initial meeting. The scribe prepares a
report for the leader based on their notes from the initial meeting.
At the final meeting, the inspectors ask questions and make comments based on
what they learned. This is the first opportunity for inspectors to learn what their
fellow inspection board members found. This meeting is a discussion among the
inspectors and the presenter with the leader there to make sure the meeting stays
on track. It is very important for the scribe to take careful notes of all
suggestions and comments made that result in action items. The presenter is not
there to defend a particular viewpoint or make a decision on how to respond to

 18 07/24/07

recommendations. Instead they are there to clarify issues and be part of an open
discussion. The leader will adjourn the meeting and thank everyone for
participating. This completes the involvement of the inspectors.
After the meeting the scribe prepares a report of all the action items and
suggestions from the meeting. This report is sent to the leader of the inspection
board. This completes the responsibilities of the scribe.
The leader will now discuss the report with the presenter. The presenter will
then go off and prepare a response to every action item and recommendation in
the report. How to respond to each recommendation is at the discretion of the
presenter. They could say for each item in turn that they plan to not reject the
recommendation. This information will only go back to the leader of the
inspection and no further (definitely not back to line management). If the
presenter refuses to be cooperative in the process, then they ultimately will gain
no benefit from it. However the inspectors will have gained experience in how
other developers analyze problems and perhaps new insights and knowledge
because of it.

5 Software Languages and Environment
The development of the Data Acquisition System will require the use of one or more
software languages that will be used for writing the source code. The languages
selected provide a framework for converting human readable instructions into a format
the operating system can execute. The operating system and the user interface to it are
referred to as the software environment in this document.

5.1 Software Languages
There are a variety of software languages that could be used to develop components
in for the Data Acquisition System. All of these languages have strengths and
weaknesses and no one language seems ideally suited for all aspects of the system.
There is no requirement that the system be developed using one software language
throughout, and instead the language used for a given part of the system should be
one best suited for the task given the available options. The current list of candidate
languages are C/C++, Java, Python and R (for mathematical studies and plotting).

5.1.1 Software Languages for Data Flow Applications
Of the leading candidates for use in the Data Acquisition System, C/C++
provides the best performance for event buffering and transport mechanisms.
Since this Data Acquisition System has fairly high rates between the Data
Combiner Boards and the Buffer/Processor nodes, and there are requirements
for fast buffering of hundreds of Megabytes in the Buffer/Processor nodes,
C/C++ is the choice for these parts of the system. C++ code should be used as

 19 07/24/07

much as possible, with C code used only where necessary for performance
reasons.

5.1.2 Software Languages for Display and Control
There is not a clear single language of choice for the display and control parts of
the system. The choice of languages for the Display Systems, such as event
display and monitoring, should be determined in part by what languages are
compatible with the underlying display libraries. The underlying display
mechanisms have not yet been determined and event display could use a
different mechanism than event monitoring and DAQ monitoring. The likely
choices are Java and C++ for the display applications and for the control
applications like Run Control.

5.1.3 Software Languages for Small Tasks
There may be small tasks for various purposes that need to accomplished in the
Data Acquisition System. The choice of which language to use depends on the
task. The choice between compiled code and scripts in this case should be based
on reliability, performance, ease of use, and ease of maintenance. Tasks that are
to be performed by experts on an as needed basis are often well suited for
scripts. Tasks that run all of the time, or periodically, often but not always are
best accomplished with compiled code. Java, C/C++ and Python are the primary
languages for these tasks. For a further list of scripting language options see the
section of Software Languages for Scripts below.

5.1.4 Software Languages for Scripts
Scripts in general should be written in Python. If for technical reasons Python is
not a good choice for a particular task, then the script should be written in the
Bourne Again Shell (bash). One exception to this rule involves mathematical
analysis and plotting scripts. When a script is being developed for diagnostic
purposes and requires mathematical manipulations, especially statistical
methods, and plotting, then it is desirable to do the manipulations and plotting in
R. The R language was developed for statistical analysis and plotting and
provides a rich palette of tools to the developer for these types of tasks.

5.2 Software Environment
The software environment represents the basic environment available to a user for
interacting with the computer hardware. This consists of both the operating system
and the command line or graphical user interface (GUI) available for interacting
with the operating system.

 20 07/24/07

5.2.1 Operating Systems
There are two operating systems supported for the Data Acquisition System. The
first is a standard Linux distribution repackaged by the Fermilab Computing
Division to include enhanced security and features. This version will also
include a custom built kernel to provide support for TRACE (a Fermilab
developed message logging system for real time application debugging) and any
performance tuning that is determined necessary. Since operating systems and
kernels are evolving, it is not possible to specify the performance tuning changes
to the kernel that are necessary at this time. This operating system will be used
in both build and runtime systems.
The second operating system will also be based on Linux, but will be one tuned
explicitly for an embedded processor environment. Although providing a
reduced set of tool and potential libraries, this second environment is expected
to be used for runtime purposes only and not as a build environment.

5.2.2 User Interfaces to the Operating System
An effort will be made to minimize the number of user interfaces to the
operating system supported in the Data Acquisition System machines. Different
machines in the system perform different functions and the interfaces supported
are ones that map well to the functions required.
In the main systems which handle the data flow we want to reduce overhead
where possible while still providing the needed functionality. These machines
will not be running X servers as those servers provide overhead and latency
while there is no need anticipated for graphical displays. The user interface thus
will be a command line shell environment on these nodes. For consistency sake
the supported shell environments will be the Bourne Shell (sh) and the Bourne
Again Shell (bash), with bash the preferred shell when possible. These two
shells use very similar in syntax with bash extending and enhancing the sh
functionality.

6 Documentation Standards

Do we have a preferred text editing tool?
Are documents going in CVS and/or documentation database?

7 Naming conventions
This section covers various naming conventions for product structure. To distinguish
between compiler versions used, the products will have a compiler version encoded as

 21 07/24/07

a UPS qualifier when the product is installed.

7.1 Directory structure
Product instances shall follow the following directory structure where applicable:

• bin/
All non-platform specific files that are needed to run the product.

• bin/ppc/
PPC specific binaries that are needed to run the product.

• bin/x86/
X86 specific binaries that are needed to run the product.

• config/
This directory is where configuration files used in building or running the
product reside. This includes a configuration file for doxygen. PyLint
configuration file resides in this directory. There should at least be a
configuration file for JCSC (Java code source checker).

• doc/
Where documentation goes. This is where both the user guides produced by
hand and the automatically generated documents from doxygen will go.
Doxygen will create subdirectories for latex and html versions. Note that
running Doxygen (1.4.6 or later at least) produces a make file in the latex
area that can be used for generating a pdf version.

• lib/
All non-platform specific libraries that are needed to run the product (e.g.
Java Jar files).

• lib/ppc/
PPC specific libraries that are needed to run the product.

• lib/x86/
X86 specific libraries that are needed to run the product.

• test/
Anything related to testing the product goes here. This test directory will
have the same subdirectory structure as the product itself – eg, bin, config,
cxx, python, etc directories.

• tools/

 22 07/24/07

Any executables or scripts that are needed for building (not running) the
product.

• ups/
UPS table file goes here.

7.1.1 C/C++
If multiple namespaces are used in a product, the directories listed below may
have substructure based on the namespace. However, this choice is left to the
product developer(s).

• cxx/dep/
Any dependency files created during the build process.

• cxx/inc/<product>
The include files can reside one level down from the inc directory in a
subdirectory with the same name as the product. When setting the include
path, we would use the path to the "inc" level and then include files using
<product>/<include_file>.

• cxx/obj/ppc/
PPC specific object files.

• cxx/obj/x86/
X86 specific object files.

• cxx/src/
Source code for libraries and binaries that are used to run the product.

7.1.2 Python
• python/src/<product>/

 The main files for the product go here.

7.1.3 Java
The naming conventions for Java packages should be as follows:

• package gov.fnal.nova.<product> for nova-specific code

• package gov.fnal.cd.<product> for experiment-independent code
With these conventions, the package paths (<package-path>) will be
gov/fnal/nova/<product> and gov/fnal/cd/<product>. The directories listed

 23 07/24/07

below include the package path when appropriate.

• java/classes/<package-path>/
This is where javac would place the .class files it builds. We may only
want this for some testing and for the rest of the time rely on building and
using jar files.

• java/src/<package-path>/
This is where the .java source files reside.

7.2 File Naming Convention
General file naming conventions should follow the rule of the filename matching
the class name defined in the file and preserve case sensitivity. Apart from nested
classes, only one class should be defined in a file.
Files for tests, and thus the classed defined inside, should append the string “Test”
to clearly distinguish them from other classes.
Expand on this.

8 Software Tools
This section covers tools selected for use in the development of the Data Acquisition
Software for the NOѵA experiment. The software tools are designed to aid in the
development and debugging and quality assurance of the systems. These tools include
compliers, debuggers, code validation, build systems, code management, automated
documentation generators, profiling and integrated development environments.

8.1 Compilers
Source code can be interpreted, compiled bytecode which is interpreted, or
compiled to binary code. Python and bash shell scripts are interpreted and do not
need to be compiled in the usual sense.

8.1.1 C/C++ Compiler
The C/C++ compiler will be gcc/g++. There are version issues that will need to
be taken into account when selecting a compiler version due to changes in name
mangling between some versions for C++ code. There are third party tools we
will be using that are thus tied to a particular compiler and version combination
and we will need to make sure compatible versions of the third party tools are
available before migrating to a new compiler version.

 24 07/24/07

8.1.2 Java Compiler
The java compiler comes with the Java development toolkit. The version should
be at least 1.5 and we should aim for starting with the newest stable version
available at the time Java code development starts. The Javadoc application also
comes as part of the toolkit so version compatibility is not an issue. There may
be issues however with third party tools that will be used, and so this will need
to be evaluated before any switch is versions is officially made.

8.1.3 Python Compilers
Python scripts are compiled into bytecode (I think, but not the same bytecode
used by Java) on the fly when imported by other scripts, and this compiled data
can be cached in files for future imports, but generally are not compiled to the
machine code level. Essentially there is no separate phase of a project for
compiling Python code for use, although one can create all the bytecode files
ahead of use by importing all of the scripts before distribution.
There is also a possibility of compiling Python scripts to improve performance,
however for this project cases where that becomes necessary should trigger a re-
write of the code in Java or C/C++. There is also the possibility of creating
Python modules from C code, in those cases the C/C++ compiler should be
used.

8.2 GUI Tools
asdf

8.3 Authentication/security
During the development cycle of the data acquisition components it is important to
identify potential places where network security can be applied. Data encryption
and peer authentication may be required to strengthen network security.

There are some options for encryption and authentication, many of them are
available in the Grid Security Infrastructure (GSI), which is part of the Globus
Toolkit (http://www.globus.org).

Authentication of users and services is handled through certificates. Certificates
contain information that is used to identify users and services, and are issued and
verified by a trusted Central Authority (CA).

Data encryption is used during the authentication phase, but it is not clear whether
Globus provides mechanisms for encrypting socket messages (e.g. run control
message to buffer nodes). For reliable and secure file transfers the GridFTP service

 25 07/24/07

http://www.globus.org/

can be used. The GridFTP user authentication also uses certificates.

The Globus Toolkit provides interfaces for C/C++ and Java only, but there are
interfaces in python available from other packages.

8.4 Debuggers

8.4.1 C/C++ Debuggers
There is a C/C++ debugger called gdb that comes with the gcc/g++ compiler.
This is a command line tool and does not provide any GUI support. There is a
GUI debugger that called ddd that can use gdb as a backend and this is can be
used for some debugging situations. However it is not very easy to debug in a
threaded environment using gdb, and so when possible it is desirable to use the
TotalView (http://www.etnus.com/) debugger. Because of name mangling issues
there can be C++ compiler incompatibilities encountered.

8.4.2 Java Debuggers
Java code can be debugged by importing the software into the Eclipse IDE and
running the debugger it provides.

8.4.3 Python Debuggers
Currently one way to debug Python code is to use the pdb module. This allows
one to set break points in the code and then run the script and step from there. It
is not a great solution but it can be helpful when using print statements, the
typical Python method of quick debugging, isn't sufficient. This is recognized as
not ideal. If there is significant Python development on the project, then a search
for better debugging tools for Python would be wise.

8.5 Build Systems

8.5.1 Build System for C/C++
The primary build system for C/C++ will be make. Each package is required to
provide a Makefile which minimally defines targets for: building object files;
building libraries; building executables; cleanup to remove built objects.
If a more advanced and easy to use build system is evaluated and found

 26 07/24/07

http://www.etnus.com/

sufficient, then it will be considered as a replacement or parallel build
mechanism.

8.5.2 Build System for Java
The primary build system for Java will be make. Each package is required to
provide a Makefile which minimally defines targets for: building class files;
building jar files; building executables; cleanup to remove built objects.
If a more advanced and easy to use build system is evaluated and found
sufficient, then it will be considered as a replacement or parallel build
mechanism.

8.5.3 Standard make targets
The following standard make targets should be supported by each make file.
Additional targets may be used in products that have non-standard build steps
such as automatically generating source files. The selection of the target C++
architecture is handled with the TARGET_PLATFORM environmental variable
which should be set before running make.

• all – this target builds the full product including Java Jar files (if needed)
and C++ libraries and binaries for PPC or X86.

• bin – builds all of the binary files that are needed to run the application.

• bincxx – builds the C++ binary files needed to run the application on
PPC or X86 platforms.

• binjava – builds the Java binary files (unlikely).

• clean – removes as many of the derived files as needed to ensure a clean
build when one of the other targets is next built.

• cleancxx – removes the derived C++ files.

• cleanjava – removes the derived Java files.

• docs – builds the Doxygen documentation (and any other derived
documents).

• lib – compiles all library source code and stores the results in the
appropriate library archives (equivalent to “libcxx libjava”).

• libcxx – compiles the C++ code for PPC or X86 and stores the object
files in one or more library archives.

• libjava – compiles the Java source files and stores the class files in one or
more Jar files.

 27 07/24/07

• test – generates all of the unit and system test applications for the
product (equivalent to “testcxx testjava”).

• testcxx – generates the C++ unit and system test applications for the
product.

• testjava – generates the Java unit and system test applications for the
product.

8.6 Integrated Development Environments
There is no requirement to use an Integrated Development Environment (IDE) for
this project. However if a developer decides to use an IDE, then the code must be
easily imported into and out of that environment. The IDE must also in no way
impose restrictions that would cause the source code files to be incompatible with
any of the following: Code Management System; Build System; Automated
Documentation Generators; Source Code Checkers or Coding Standards;
Compilers; Debuggers. One possible IDE that appears to meet these requirements
is the Eclipse IDE. An additional requirement is that any developer who does use
an IDE must document how to: import and export packages from the environment;
install IDE and any plugins if necessary; how to use IDE for developing software
for the environment.

8.7 Automated Documentation Generators
Automated documentation generator parse and pre-process source code files to
extract documentation tags and build reference manuals for the code. This level of
documentation provides the most benefit to the developers and maintainers of the
software, and is invaluable when it comes to handing off support to someone who
was not on the project during the development phase. The advanced generators
have built in pre-processors that understand the language syntax. These generators
also understand a set of tags which are used to document the functionality of
classes, methods and functions, etc. The tags are very useful in defining the
purpose of methods as well as the meaning of arguments and exceptions thrown.
Where supported by the generators, Javadoc style tags are required in the code.
Since the documentation is for the developers and maintainers, it is sufficient to
produce web based documentation (html files).

8.7.1 Automated Documentation Generator for Java
Instead of using the javadoc application which comes with the Java installation
for documentation generation for Java code, Doxygen, as of version 1.4.6 at
least, is believed sufficiently mature for this purpose. If in the future Doxygen is
found to not properly handle the formatting for this project, then Javadoc will be
used as an alternative. The use of Doxygen for Java will allow generated

 28 07/24/07

documents to be consistent with those generate for C++.

8.7.2 Automated Documentation Generator for C/C++
The Doxygen program should be used to generate documentation from C/C++
source files. Doxygen uses a configuration file to determine most of the
behavior on what is documented and what is ignored. There should be a standard
template for C/C++ packages produced and each package should have a tailored
version resident with the code. As much as possible, settings should be used that
provide formatting as close to that of Javadoc as possible. There are multiple
switches available that deal with making the behavior similar to Javadoc.

8.7.3 Automated Documentation Generator for Python
Doxygen 1.4.6 can parse Python code and produce documentation. here are two
ways to add documentation now for Python code. The first is to use the triple
quote method. Blocks enclosed in triple quotes will be processed by the python
interpreter via the doc() method call. This allows users to get interactive help on
a class or method and is very useful during the development phase. Doxygen
will also parse these blocks as a whole chunks and put them in the
documentation it produces. However, it does not recognize tags inside the triple
quotes so you don't get nicely formatted documentation but instead get a block
of text pretty much as you entered it.
There is a second method recognized by Doxygen which will parse the special
tags (e.g. @param). This leads to much nicer documentation. he basic structure
is to start a comment block section with "## " and then subsequent lines in the
block start with "# ". Also, the comment blocks need to preserve indentation of
the executable code otherwise they are ignored. Below is an example that
worked, but not necessarily with the text we would use (Class Definition, etc is
based on a different way to parse the file).
We want to preserve the utility of the doc() method calls (triple quote
documentation scheme), but also want to have the more useful structure, which
is also more consistent with the C/C++ format, for the documentation. Therefore
we may have to put in a bit of duplicate information within the python source
files to achieve this. I haven't been able to think of a good way of doing this
without the duplication.
Below is an example of how one could handle python source code
documentation. Note the Doxygen would like to see the self variable explained
with the @param tag, but that would not be in line with method signatures for
C++ or Java.

 29 07/24/07

Class Definition: partition Class ---
Class for tracking state of a partition file in dlsam.

class partition:
 """
 This is a class for tracking the state of a partition file and
 the description comes from the __doc__ string.
 """
 ## Class Method Definition: partition.__init__ ---
 # Initialization of class instance for partition Class.
 # @param info Imported state dictionary object
 # @returns None
 #
 def __init__(self,info):
 """
 Constructor for the partition file state tracking class.
Description
 from the __doc__ string.
 Inputs:
 info Imported state dictionary object
 """
 ## @var historyDict
 # a history dictionary
 self.historyDict=None

8.7.4 Languages without Automated Documentation
Generation

There are no documentation generators we are aware of at this time for scripts
written in bash or R. These scripts should still use Javadoc style tags to
document the code. Minimally a parsing program could be provided to pull out
these tags and generate some simple documentation based on the comments
alone. While this would not have the benefit of pre-processing and
understanding the underlying script syntax for structuring, it would still provide
some useful documentation. Regardless of when the generator is made available,
these scripts will still be required to properly use the tags.

8.8 Profilers
There is need for a profiling tool that runs under Linux and handles threaded
applications properly.

 30 07/24/07

8.8.1 C/C++ Profilers
An evaluation of oprofile was performed in 2005 and it was raised strong
concerns about the accuracy matching time to the proper thread and method. A
tool has been developed at Fermilab to do a better job on time accounting for
threaded applications and this tool is considered the best choice at this time. This
tool is called perf_tools (http://home.fnal.gov/~jbk/profiling/index.htm).

8.8.2 Java Profilers
There have been no specific Java profiling tools identified at this time. The
Eclipse IDE continues to be enhanced and may provide this functionality by the
time development starts. It should be noted C/C++ will be used for high
performance situations which might benefit from profiling tools, so this may not
be an issue for the Java code for this project.

8.8.3 Python Profilers
There may be Python profilers available, and if so these could be used to
identify parts of the Python code that should be implemented in C/C++ or Java.
However Python applications that demonstrate performance issues should in
most cases just be implemented in C/C++ or Java and so profiling is less of an
issue.

8.9 Source Code Checkers
There is varying support for checking standards like naming conventions and other
programming practices. Thus some of this will need to be done by hand. However,
were available tools should be used to aid in the process.

8.9.1 C/C++ Code Checkers
For C/C++ programs there does not appear to be a Linux version of a program
like the old Unix lint program. Thus some of the naming convention checking
may have to be done by hand. There is an application that does a good job of
checking for programming errors such as memory leaks. The application of
choice for this task is Insure++
(http://www.parasoft.com/jsp/products/home.jsp?product=Insure). Because of
name mangling issues, the version of this application can be depended on the
compiler version. Naming convention standards may need to be checked and
enforced by hand.

 31 07/24/07

http://home.fnal.gov/%7Ejbk/profiling/index.htm
http://www.parasoft.com/jsp/products/home.jsp?product=Insure

8.9.2 Java Code Checkers
There is an application available for checking coding standards in Java called
JCSC (http://sourceforge.net/projects/jcsc) which should be used for validating
all Java code developed for the Data Acquisition System.

8.9.3 Python Code Checkers
There is an application, modeled on the old Unix lint application, for checking
coding standards in Python scripts called PyLint
(http://www.logilab.org/projects/pylint). This application should be used for
checking Python scripts for the Data Acquisition System.

8.10 Code and Build Requirements for Aiding Debugging
Process

This section deals with requirements designed to aid in debugging the system. In
order to use debugging tools, the software needs to be built with enough
information included for the debugging tools to properly map the instructions back
to the source code. Thus it is required that all libraries be built in debug mode and
not in any optimized mode.
To help with diagnostics before resorting to a debugging tool, use of the TRACE
package should be used in key sections of the code for the primary C/C++
applications to insert messages into a circular memory buffer. The Linux operating
systems on all machines in the Data Acquisition System must run a kernel patched
for TRACE support.

8.10.1 Trace Levels
Trace levels shall be defined as:

8.11 Code Distribution
Our experience with developing, commissioning and long term operating and
maintaining of Data Acquisition Systems has highlighted the importance of
multiple concurrent version support. The ability to deploy a new version into a
running production environment without disturbing the operations of the system is
highly valuable. This allows the support team to deploy a version ahead of time,
configure it for production use, and schedule a switch over for a later time. It also
allows for a rapid rollback to the older version, without needing to install or
uninstall any software, if an unforeseen problem should arise in the production
environment. It also allows for simultaneous debugging on one machine of multiple
versions of an application which can be invaluable when investigating subtle
problems.

 32 07/24/07

http://sourceforge.net/projects/jcsc
http://www.logilab.org/projects/pylint

8.11.1 Issues with RPM for Multiple Version Support
Since we expect the operating system to be based on a Fermilab packaged
version of Linux, and that version is an rpm based system (RedHat Package
Management), a logical system to consider for code distribution is the rpm
mechanism. However, natively the rpm mechanism does not support
simultaneously installed versions of the same package. This system is designed
for management of systems to a consistent level of software packages, but not
for multiple instances of the same package. The idea is to allow libraries and
executables to be installed in centralized locations so the user environment does
not have to point to special areas to pick up the libraries and executables. While
that allows for easy definition of a user environment and maintenance for one
version of a package, that model does not at all work for allowing easy access to
multiple versions of the same package.
There have been proposed ways to work around this limitation by including
version information explicitly as part of the package name, using multiple rpm
databases and installation target areas, and similar kludges. However, even
ignoring the many issues of maintenance these types of schemes would raise
there is still the issue of being able to quickly define the user environment to
point at the correct executable and library versions. There would need to be a
mechanism for quickly and easily configuring a user's environment for a
different version of a software package. This system would need to allow the
same user to be configured to use different versions in different shell windows at
the same time in order to support simultaneous debugging. The system would
also need to provide a quick and easy to understand means of determining which
versions of the package are available on the system and an easy way to select the
desired one. Finally there would need to be easy to use infrastructure to maintain
these multiple versions, install new ones and uninstall old ones all without
placing a large burden on the developers or support staff. None of this
functionality currently exists and it all would have to be designed, developed
and maintained.
For these reasons the rpm mechanism is not well suited for the short, medium, or
long term needs of this project.

8.11.2 UPS/UPD System for Code Distribution
The UPS/UPD, Unified Product Setup(?) and Unified Product Distribution(?),
was developed at Fermilab to provide the easy to use and maintain multiple
package version support. The system is no longer in the development phase and
is considered supported only through the end of Run II at this time. However we
do possess a great deal of expertise and experience with this system and it would
exceed all of our requirements for this project.
The long term support is an issue, however we do have on our team one of the

 33 07/24/07

original developers and they believe they can continue to internally support new
builds as needed for this project. Therefore we believe the risk of using this
mechanism is minimized by our access to the source code and ability to in house
support the product.
UPS/UPD can be separated into two distinct sets of functionality. UPS provides
support of multiple versions of packages on a system along with functionality
easily determining versions available, installing or uninstalling versions,
querying for available versions, and configuring the user environment on the fly
to switch between versions. Complex dependencies between packages and
actions for configuring the user environment are supported, however we
envision only using the minimal (and thus easily support) features.
UPD is a product distribution mechanism that uses a centralized ftp repository
for storing package versions for distribution to multiple hosts. The system
supports easy access to lists of versions of packages available as well as
seamlessly integrating with the UPS mechanism for installation at the remote
sites. While this is a valuable mechanism for code distribution management and
we would certainly use it if we can, we can also easily live without it. We
already know how to independently package software for the UPS environment,
and integrate with the UPS mechanism for installing the software independent of
UPD. This has been previously accomplished with scripts in another project
where some packages were maintained outside of UPD. Therefore there is little
risk in selecting UPD as a possible code distribution management system.

8.12 Code Management Systems
Software development for this project will be a joint effort. Thus there may be
multiple people working on the same application or library at any given time. In
order to manage this environment and reduce the risk of changes being lost, a code
management system will be needed. This system should provide a central
repository that can be accessed from different machines by different developers. It
should also provide a means for merging in changes as well as tracking older
revisions for future reference and the ability to group versions of various files with
a name so that a complete set of files as a snapshot in time can easily be accessed.
In the Fermilab Computing Division there is a lot of experience with CVS for
providing this type functionality. CVS fulfills all of the requirements for this
project. There is also centralized support for a CVS repository at Fermilab, so by
using that system we eliminate the need for maintaining the repository and
infrastructure ourselves. Given all of these benefits it is clear that using CVS as the
Data Acquisition code management system is a good decision.

 34 07/24/07

	1 Coding Standards
	1.1 General Source Code Comments
	1.2 Source Code Document Tags
	2 Conventions and Formatting Styles
	2.1 Naming Conventions
	2.2 Formatting Style
	2.3 Method and Data Member Ordering
	2.4 Usage Rules

	3 Software Development Cycle
	3.1 Code Design
	3.2 Code Development
	3.3 Code Release Testing
	3.4 Code, Document and Test Review
	3.5 Code Release

	4 Code and Release Review Procedures
	4.1 Conditions for Triggering an Informal Review
	4.2 Conditions for Triggering a Fagan Inspection
	4.3 Informal Review
	4.3.1 Informal Review Structure
	4.3.2 Informal Review Procedures

	4.4 Fagan Inspection
	4.4.1 Fagan Inspection Structure
	4.4.2 Fagan Inspection Procedures

	5 Software Languages and Environment
	5.1 Software Languages
	5.1.1 Software Languages for Data Flow Applications
	5.1.2 Software Languages for Display and Control
	5.1.3 Software Languages for Small Tasks
	5.1.4 Software Languages for Scripts

	5.2 Software Environment
	5.2.1 Operating Systems
	5.2.2 User Interfaces to the Operating System

	6 Documentation Standards
	7 Naming conventions
	7.1 Directory structure
	7.1.1 C/C++
	7.1.2 Python
	7.1.3 Java

	7.2 File Naming Convention

	8 Software Tools
	8.1 Compilers
	8.1.1 C/C++ Compiler
	8.1.2 Java Compiler
	8.1.3 Python Compilers

	8.2 GUI Tools
	8.3 Authentication/security
	8.4 Debuggers
	8.4.1 C/C++ Debuggers
	8.4.2 Java Debuggers
	8.4.3 Python Debuggers

	8.5 Build Systems
	8.5.1 Build System for C/C++
	8.5.2 Build System for Java
	8.5.3 Standard make targets

	8.6 Integrated Development Environments
	8.7 Automated Documentation Generators
	8.7.1 Automated Documentation Generator for Java
	8.7.2 Automated Documentation Generator for C/C++
	8.7.3 Automated Documentation Generator for Python
	8.7.4 Languages without Automated Documentation Generation

	8.8 Profilers
	8.8.1 C/C++ Profilers
	8.8.2 Java Profilers
	8.8.3 Python Profilers

	8.9 Source Code Checkers
	8.9.1 C/C++ Code Checkers
	8.9.2 Java Code Checkers
	8.9.3 Python Code Checkers

	8.10 Code and Build Requirements for Aiding Debugging Process
	8.10.1 Trace Levels

	8.11 Code Distribution
	8.11.1 Issues with RPM for Multiple Version Support
	8.11.2 UPS/UPD System for Code Distribution

	8.12 Code Management Systems

